511-2018-09-21-neurophys-II

Rick Gilmore

Ease on down, ease on down

Propagation is the way...

Today's Topics

- Equilibrium potential and driving forces
- \cdot The action potential
- Synaptic communication

Party On

- Annie (A-) was having a party.
 - Used to date Nate (Na^+), but now sees Karl (K^+)
- Hired bouncers called
 - "The Channels"
 - Let Karl and friends in or out, keep Nate out
- Annie's friends (A-) and Karl's (K^+) mostly inside
- Nate and friends (Na^+) mostly outside
- Claudia (Cl-) tagging along

Party On

K⁺

Na⁺

C۲

Organic anions 139

12

4

138

4

145

116

134

The *K*⁺ story

- Na^+/K^+ pump pulls K^+ in
- $[K^+]_{in}$ (~150 mM) >> $[K^+]_{out}$ (~4 mM)
- Outward flow of *K*⁺ through passive/leak channels
- Outflow stops when for K⁺

,
$$V_m =$$

Equilibrium potential

- Voltage (V_K) that keeps system in equilibrium
 - $[K^+]_{in} >> [K^+]_{out}$
- Nernst equation
 - $V_K = \frac{RT}{(+1)F} ln(\frac{[K^+]_{out}}{[K^+]_{in}})$
 - *V_K* = ~ -90 mV
 - Negative in/positive out keeps in/out concentration gradient

Equilibrium potential

- *K*⁺ flows out through passive/leak channels; most remains near membrane
- Separation from A^- creates charge $\frac{K+K+K+K+K+K+}{A-A-A-A-A-}$ along capacitorlike membrane
- $V_m \rightarrow V_K$

Equilibrium potentials calculated under typical conditions

lon	[inside]	[outside]	Voltage
K^+	~150 mM	~4 mM	~ -90 mV
Na ⁺	~10 mM	~140 mM	~ +55-60 mV
CI-	~10 mM	~110 mM	~ - 65-80 mV

$$V_{\mathrm{K}} = \frac{RT}{(+1)F} \ln \frac{[\mathrm{K}^{+}]_{o}}{[\mathrm{K}^{+}]_{i}}$$

The Na^+ story

- Na^+/K^+ pump pushes Na^+ out
- $[Na^+]_{in}$ (~10 mM) << $[Na^+]_{out}$ (~140 mM)
- Equilibrium potential for Na^+ , $V_{Na} = \sim +55 \text{ mV}$
 - Inside positive/outside negative to maintain outside > inside concentration gradient
- If Na^+ alone, $V_m \rightarrow V_{Na}$ (~ +55 mV)

"Resting" potential

- Sum of outward K^+ and inward Na^+
 - Membrane more permeable to K^+ than Na^+ , $p_{K^+>p_{Na+}}$
 - Outward flow of K^+ > inward flow of Na^+
 - Resting potential (~-70 mV) closer to V_K (-90 mV) than V_{Na} (+55 mV)
- Goldman-Hodgkin-Katz equation

-
$$V_m = \frac{RT}{F} ln(\frac{p_{K^+}[K^+]_{out} + p_{Na^+}[Na^+]_{out}}{p_{K^+}[K^+]_{in} + p_{Na^+}[Na^+]_{in}})$$

"Driving force" and equilibrium potential

- "Driving Force" on a given ion depends on difference between
 - Equilibrium potential for given ion
 - Membrane potential = effects of all ions
- Anthropomorphic metaphor
 - K^+ "wants" to flow out (pull neuron toward V_K)
 - Na^+ "wants" to flow in (pull neuron toward V_{Na})
 - Strength of that "desire" depends on distance from equilibrium potential

Action potential

https://upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Action_potential.svg/300px-Action_potential.svg.png

Action potential

- Rapid rise, fall of membrane potential
- Threshold of excitation
- Increase (rising phase/depolarization)
- Peak
 - at positive voltage
- Decline (falling phase/repolarization)
- Return to resting potential (refractory period)

Action potential components

Phase	Neuron State
Rise to threshold	+ input makes membrane potential more +
Rising phase	Voltage-gated Na^+ channels open, Na^+ enters
Peak	Voltage-gated Na^+ channels close and deactivate; voltage-gated K^+ channels open
Falling phase	K ⁺ exits
Refractory period	Na^+/K^+ pump restores [Na^+], [K^+]; voltage- gated K^+ channels close

Action potentials and driving forces

Neuron at rest

- Driving force on K^+ weakly out
 - -70 mV (-90 mV) = +20 mV
- Driving force on Na^+ strongly in
 - -70 mV (+55 mV) = -125 mV
- Na^+/K^+ pump maintains concentrations

Action potential rising phase

- Voltage-gated *Na*⁺ channels open
- Membrane permeability to Na^+ increases
 - *Na*⁺ inflow through passive + voltage-gated channels
 - continued *K*⁺ outflow through passive channels

Peak

- Membrane permeability to Na^+ reverts to resting state
 - Voltage-gated *Na*⁺ channels close & inactivate
 - Slow inflow due to small driving force (+30 mV 55mV = -25 mv)

Peak

- Membrane permeability to *K*⁺ increases
 - Voltage-gated *K*⁺ channels open
 - Fast outflow due to strong driving force (+30 mv (-90 mv) = +120 mV)

Falling phase

- K^+ outflow
 - Through voltage-gated *K*⁺ and passive *K*⁺ channels
- Na^+ inflow
 - Through passive channels only

Absolute refractory phase

- Cannot generate action potential (AP) no matter the size of the stimulus
- Membrane potential more negative (-90 mV) than at rest (-70 mV)
- Voltage-gated *Na*⁺ channels still inactivated
 - Driving force on Na⁺ high (-90 mv 55 mV = -145 mV), but too bad

Absolute refractory phase

- Voltage-gated *K*⁺ channels closing
 - Driving force on K^+ tiny or absent
- Na^+/K^+ pump restoring concentration balance

Relative refractory period

- Can generate AP with larg(er) stimulus
- Some voltage-gated *Na*⁺ 'de-inactivate', can open if
 - Larger input
 - Membrane potential is more negative than resting potential

Review AP phases and driving forces

Neuron at rest

- Voltage-gated *Na*⁺ closed, but ready to open
- Voltage-gated K^+ channels closed, but ready to open
- Membrane potential at rest
- Na^+/K^+ pump still working...

Phase	lon	Driving force	Flow direction	Flow magnitude	
Rest	K^+	20 mV	out	small	
	Na ⁺	125 mV	in	small	

Phase	lon	Driving force	Flow direction	Flow magnitude
Rising	K^+	growing	out	growing
	Na ⁺	shrinking	in	high

Phase	lon	Driving force	Flow direction	Flow magnitude
Peak	K^+	120 mV	out	high
	Na ⁺	20 mV	in	small

Phase	lon	Driving force	Flow direction	Flow magnitude
Falling	К	shrinking	out	high
	Na ⁺	growing	in	small

Phase	lon	Driving force	Flow direction	Flow magnitude
Refractory	К	~0 mV	out	small
	Na ⁺	145 mV	in	small

Animation

APs and Information Processing

Information processing

- AP amplitudes don't vary (much)
 - All or none
 - Vand Van't vary much b/c Mod mp always working
- AP frequency and timing vary
 - Rate vs. timing codes
 - Same rates, but different timing
 - "Grandmother" cells and single spikes

Information processing

(Eyherabide et al., 2009)

Generating APs

•

- Portion of soma adjacent to axon
- Integrates/sums input to soma
- Umyelinated portion of axon adjacent to soma
- Voltage-gated *Na*⁺ and *K*⁺ channels exposed
- If sum of input to soma > threshold, voltage-gated Na⁺ channels open

Axon hillock, axon initial segment

Axon Hillock" by M.aljar3i - Own work. Licensed under CC BY-SA 3.0 via Commons

AP propagation

- Propagation
 - move down axon, away from soma, toward axon terminals.
- Unmyelinated axon
 - Each segment "excites" the next

AP propagation is like

AP propagation

- Myelinated axon
 - AP "jumps" between
 - Nodes of Ranvier == unmyelinated sections of axon

_>

- voltage-gated *Na*⁺, *K*⁺ channels exposed
- Current flows through myelinated segments

Question

- Why does AP flow in one direction, away from soma?
 - Soma does not have (many) voltage-gated *Na*⁺ channels.
 - Soma is not myelinated.
 - Refractory periods mean polarization only in one direction.

Question

- Why does AP flow in one direction, away from soma?
 - Soma does not have (many) voltage-gated *Na*⁺ channels.
 - Soma is not myelinated.
 - Refractory periods mean polarization only in one direction.

Conduction velocities

WikipediA

Nerve conduction velocity

Nerve conduction velocity is an important aspect of <u>nerve conduction studies</u>. It is the speed at which an <u>electrochemical</u> impulse propagates down a <u>neural</u> <u>pathway</u>. Conduction velocities are affected by a wide array of factors, including age, sex, and various medical conditions. Studies allow for better diagnoses of various neuropathies, especially demyelinating conditions as these conditions result in reduced or non-existent conduction velocities.

Contents

Normal conduction velocities

Testing methods

Nerve conduction studies Micromachined 3D electrode arrays

Causes of conduction velocity deviations Anthropometric and other individualized factors Age Sex Temperature Height Hand factors Medical conditions Amyotrophic lateral sclerosis (ALS) Carpal tunnel syndrome

Saltatory Conduction

Hodgkin-Huxley Equations

WikipediA

Hodgkin–Huxley model

The **Hodgkin–Huxley model**, or **conductance-based model**, is a <u>mathematical model</u> that describes how <u>action potentials</u> in <u>neurons</u> are initiated and propagated. It is a set of <u>nonlinear differential equations</u> that approximates the electrical characteristics of excitable cells such as neurons and <u>cardiac myocytes</u>. It is a continuous time model, unlike, for example, the Rulkov map.

<u>Alan Lloyd Hodgkin</u> and <u>Andrew Fielding Huxley</u> described the model in 1952 to explain the ionic mechanisms underlying the initiation and propagation of action potentials in the <u>squid</u> giant axon.^[1] They received the 1963 Nobel Prize in Physiology or Medicine for this work.

Basic components

Ionic current characterization Voltage-gated ion channels Leak channels Pumps and exchangers

Mathematical properties Center manifold

More on HH

- Measuring APs in actual neurons. https://www.youtube.com/embed/k48jXzFGMc8
- Interview with Sir Alan Hodgkin, https://www.youtube.com/embed/vSIXbfunHYg
- Simulations
 - http://alexhwilliams.info/code/pyneuron_morph.html
 - http://briansimulator.org/demo/
 - http://www.gribblelab.org/compneuro/3_Modelling_Action_Potentia

Synaptic transmission

What happens when AP runs out of axon?

- Rapid change in voltage triggers neurotransmitter (NT) release
- Voltage-gated calcium Ca++ channels open
- Ca++ causes to bind with presynaptic membrane, merge
- NTs diffuse across
- NTs bind with on
- NTs unbind, are inactivated

Receptor/channel types

- Leak/passive
 - Vary in selectivity, permeability
- Transporters/exchangers
 - Ionic
 - Na^+/K^+
 - Chemical
 - e.g., Dopamine transporter (DAT)

Receptor/channel types

- Ionotropic receptors (receptor + ion channel)
 - Ligand-gated
 - Open/close channel
- Metabotropic receptors (receptor only)
 - Triggers 2nd messengers
 - G-proteins
 - Open/close adjacent channels, change metabolism

Gap junctions

.

flows through adjacent neurons

Nature Reviews | Neuroscience

Chemical synapse

NEUROSCIENCE 5e, Figure 5.3 © 2012 Sinauer Associates, Inc.

Receptor types

lonotropic receptor

Metabotropic receptor

Fig. 5a. lonotropic receptors and their associated ion channels form one complex (top). Each iGluR is formed from the co-assembly of multiple (4-5) subunits (From Kandel et al., 1991). Fig. 5b. Metabotropic receptors are coupled to their associated ion channels by a second messenger cascade (top). Each mGluR is composed of one polypeptide, which is coupled to a G-protein (from Kandel et al., 1991).

Receptors generate

• Small voltage changes

•

.

- Amplitude scales with # of receptors activated
 - Depolarize neuron (make more +)
 - Hyperpolarize neuron (make more -)

NTs inactivated

- Buffering
 - e.g., glutamate into astrocytes
- Reuptake via transporters
 - e.g., serotonin via serotonin transporter (SERT)
- Enzymatic degradation
 - e.g., AChE degrades ACh

Questions to ponder

- Why must NTs be inactivated?
- What sort of PSP would the following induce:
 - Open *Na*⁺ channel
 - Open K^+ channel
 - Open Cl- channel, $[Cl^-]_{out} >> [Cl^-]_{in}$

Types of synapses

References

Eyherabide, H. G., Rokem, A., Herz, A. V. M., Samengo, I., Eyherabide, H. G., Rokem, A., ... Samengo, I. (2009). Bursts generate a non-reducible spike-pattern code. , , 1. https://doi.org/10.3389/neuro.01.002.2009