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I. Introduction 

The human brain is comprised of a dense web of interdigitated functional networks. 

Understanding how the brain’s complex functions give rise to human cognitive abilities in both 

health and disease depends on unraveling the carefully coordinated interactions between 

networked brain regions and their responses to environmental change (Holmes & Patrick, 

2018). Historically, substantial progress was made delineating this intricate architecture through 

post-mortem dissections in humans and tract tracing and lesion studies in animals. Yet there 

remained many gaps in our understanding of how the brain influences behavior, particularly 

psychiatric illnesses. The limitations of these labor-intensive approaches have receded over the 

past 40 years with the advent of in vivo imaging approaches such as positron emission 

tomography (PET), electroencephalography (EEG), electrocorticography (ECoG), and 

magnetoencephalography (MEG; see Raichle, 2009 for historical overview). The introduction of 

functional magnetic resonance imaging (fMRI), in particular, has sparked spectacular growth in 

psychiatry research.  

 

Fueled by rapid methodological and analytic advances, fMRI has come to dominate the clinical 

literature, allowing us to study brain function in a rapid and non-invasive manner across ever 

larger samples. These technological developments have made it easy to become exceedingly 

optimistic about the future of clinical neuroscience. Although fMRI methods have evolved rapidly 

since the first brain scans in the 1980s, there remain core approaches and theoretical principles 

that can be used to understand the current state of the field and anticipate future innovations. 

Here we take a critical look at how fMRI measures can inform our understanding of brain 

functions in psychopathology. To help researchers select appropriate methods, we will cover 

fMRI study design, analysis, and interpretation and discuss some of the advantages and 

disadvantages of each design and analytic choice. 

 
II. Experimental Approaches 

A central goal of clinical cognitive neuroscience is to understand how common cognitive and 

neural systems may differ in people with, or at risk for, psychopathology. By cognitive 

mechanisms we include perceptual processes, such as stimulus detection or facial recognition; 

salience-related processes, such as reward or threat detection; executive processes, such as 

cognitive control, emotion regulation or decision-making; and motor processes, such as 

response initiation. Of course, there are many more, with names and descriptions that often 
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overlap (Poldrack, 2010). The brain implements these cognitive processes in a manner that is 

evident at different levels of analysis, from molecular mechanisms (e.g. neurotransmission) to 

large-scale networks (e.g. spike-timing-dependent plasticity through which neurons assemble). 

Clinical cognitive neuroscience uses an array of methods to disentangle the complexities of 

psychopathology into finer, potentially discrete, deficits in specific aspects of brain biology. This 

approach is often most effective when it builds on established behavior-brain research that 

informs an understanding of individual differences. For example, a good deal of work on working 

memory impairments in psychosis patients extends upon foundational working memory studies 

in humans (Park, Holzman, & Goldman-Rakic, 1995) and non-human primates (e.g. Funahashi, 

Bruce, & Goldman-Rakic, 1989).  

 

1. Measuring the Brain When Performing Tasks 
It is intuitive to ask how the brains of people with mental illnesses differ while thinking. Pioneers 

such as Ingvar and Franzen (1974) used a forerunner of PET imaging to study resting cerebral 

blood flow (rCBF) in patients with schizophrenia during a cognitively demanding task. Although 

overall rCBF levels were similar to controls, in postcentral sulcus it was relatively higher in 

patients with schizophrenia, whereas in prefrontal cortex it was relatively lower. Thus began an 

era of function-based neuroimaging efforts that have increased in power and sophistication in 

the subsequent decades.  

 

Table 1 delineates the four general approaches to task-evoked fMRI that are commonly used, 

and Figure 1 illustrates how these approaches differ in stimulus presentation and associated 

models of the blood-oxygen-level dependent (BOLD) response, which reflects the concentration 

of deoxygenated, relative to oxygenated hemoglobin. A ratio that is altered by local neural 

activity (Huettel, Song, & McCarthy, 2004; Logothetis, Pauls, Augath, Trinath, & Oeltermann, 

2001). Block designs are far-and-away the most robust, and are therefore the most efficient 

strategy for obtaining maps of where the BOLD response is occurring in the brain. A block 

design study consists of discrete “on” and “off” periods, each lasting from tens of seconds to 

minutes in duration. During the “on" times a stimulus is presented or a behavior is elicited. 

These blocks are contrasted with “off” periods that consist of rest, baseline, or alternate task 

states. For example, the Human Connectome Project (HCP) collected seven tasks twice in 

block designs lasting 2-5 minutes (Barch et al., 2013). During the HCP working memory task, 

participants switched between performing a 2-back task (which required a running memory load 
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of two items) and a 0-back attentional control task for 25 seconds each. All brain areas with 

metabolic demands when performing the task showed a rising BOLD response that reached a 

steady state within 5-6 seconds of the beginning of the block and then declined within 5-6 

seconds when the cognitive load was removed. Because the metabolic demands associated 

with observing and responding to the stimuli were similar in the 2-back and 0-back conditions, a 

comparison between them would likely show little differential visual or motor activity. Instead, 

the biggest changes appeared in places where there were greater demands when maintaining a 

running load of two items. This strategy assumes that all items in a given condition are similarly 

difficult and that no aspect of the task (e.g. the occurrence of a repeated item) is of particular 

interest. The robustness of block designs can also be used to examine changes in activation 

across populations (e.g., case vs comparison samples) or treatment conditions. Haut and 

colleagues (Haut, Lim, & MacDonald, 2010) compared 2-back to 0-back activity, this time in 

people with schizophrenia to examine how cognitive training tasks changed activity more than 

controls in several regions of prefrontal cortex. Despite these advantages, block designs come 

with a number of potential interpretive problems for clinical research. For example, brain regions 

activated more in the 2-back than in the 0-back may be involved in many processes besides a 

higher working memory load, such as updating the stimuli after each trial, suppressing 

interference, monitoring conflict, expecting and preparing for another trial of the same kind, and 

experiencing frustration or even futility. For reasons we’ll discuss further below in Interpretation, 

performance differences between groups on the different blocks can also present a challenge, 

as the analysis of error trials is mixed together with the analysis of accurate trials. 

 

In order to examine discrete trials and address constraints of block designs, many 

experimenters have employed event-related (later called “slow event-related”) designs (Huettel, 

2012) that leverage the hemodynamic time-course associated with local regional neural activity. 

This approach is characterized by large gaps in time between stimuli, allowing the BOLD 

response to rise and fall before presenting the next trial (which may have different tasks 

demands). Because this allows one to disentangle more components of task performance, 

many investigators gravitated toward this technique. For example, in a study of context 

processing-related deficits associated with the genetic liability to schizophrenia, MacDonald and 

colleagues (2006) differentiated between the task demand of maintaining a task representation, 

which involved DLPFC and was impaired in patients and first-degree relatives, and that of 

overcoming conflict, which evoked the anterior cingulate and was impaired in patients but not 
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their relatives. What’s more, these differences were observed on correct trials, thereby partially 

controlling for individual’s fluctuating task engagement. However, due to the slow nature of the 

hemodynamic response, fewer trials can be included using this approach, which provides 

reduced statistical power relative to a block design. 

 

One way to introduce more trials is to group them closer together without allowing the 

hemodynamic response to resolve fully, which is commonly called the fast event-related design. 

This strategy owes its existence to several key contributions. As illustrated in Figure 1, 

convolution models for fMRI analysis (Friston et al., 1995) combined the time a stimulus 

occurred with an expectation about how the BOLD signal would respond. Subsequently, it was 

found that the BOLD response could summated across successive trials even with short inter-

trial intervals (Dale & Buckner, 1997). This property of the BOLD signal allows task-relevant 

activations to be predicted based on the expected response to closely spaced stimuli and 

events, if the trials -- or events within the trial -- are sufficiently independent. This provides the 

opportunity to analyze closely spaced trials, or events within a task, drastically shortening the 

study collection times and the associated burden on research participants. For example, Poppe 

and colleagues (Poppe et al., 2016) took advantage of this design using a paradigm that 

required cue maintenance to control the response to a subsequent probe. In this case if the cue 

was an A, then one would respond left to the probe, but if the cue was a B, then a right 

response to the probe was correct. To disentangle (to the degree possible) the relationships 

between the cues and probes, jitter (i.e., pseudorandom variation) was introduced into the 

interstimulus and intertrial intervals to facilitate modeling these independently. 

 

Hybrid designs are used when the robustness of a block design is desirable, but where some 

questions can also be addressed using the more specific information that comes from 

examining individual trials. In such instances, one can blend block and event-related designs. 

This technique could be used to model individual trials within a block to identify and remove 

error trials, examine how different trials within a category interact with each other, or track 

different time courses across regions. The overarching point is that even as each design has 

various strengths and limitations, they need not be mutually exclusive. With planning, a given 

task might be conceptualized and analyzed from several perspectives, taking advantage of the 

associated strengths of each. 
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2. Measuring the Brain without Tasks: the “Resting State” 
 

In addition to responding to stimuli, the brain also shows reliable patterns of activity in the 

absence of explicit task states or in so-called resting state designs (e.g., Biswal, Yetkin, 

Haughton, & Hyde, 1995). As the brain is not particularly good at resting we prefer the term 

intrinsic function or intrinsic functional connectivity for what is being measured when the mind is 

not directed to a particular task. The earliest clinical cognitive neuroscience studies examining 

patients’ intrinsic brain functioning generally used PET to measure glucose metabolism. For 

example, individuals with schizophrenia display lower levels of rCBF in prefrontal and temporal 

regions (Farkas et al., 1984). This raised the question as to whether these differences reflected 

an inability to use those brain regions (a direct result of illness) or a disposition to use those 

brain regions less, perhaps because due to distraction, fatigue or some other factor (a 

downstream result of illness). This ambiguity led this approach to fall out of favor for a period of 

time, yet a number of advantages as well as promising empirical observations have re-

established resting-state, or intrinsic functioning, as a mainstay of neuroimaging. 

 

Work in this domain by Biswal and colleagues (1995; Figure 2A) suggested an intrinsic 

organization to the brain that mirrored task-related functions. Their foundational study revealed 

that even when the brain was not engaged in a motor task, signal fluctuations in the motor 

cortex were highly correlated with neighboring voxels as well as spatially distinct regions 

associated with motor functioning. Functional connectivity between brain regions, such as 

reported by Biswal and colleagues, is usually analyzed in terms of correlation, signal coherence, 

or other temporal similarities in BOLD fluctuations. Providing converging evidence for intrinsic 

approaches to the study of brain functions, Koch et al. (2002) combined diffusion-based and 

functional methods to reveal that intrinsic correlations between brain regions may depend on 

anatomic projections. This principle was expanded by Smith and colleagues (2009), who used a 

statistical algorithm called independent components analysis to identify a number of distributed 

functional networks (about 20 different such “components”) and showed that the structure of 

these networks mapped quite closely to activation patterns from a large-scale meta-analysis of 

broad task categories. For example, meta-analysis indicated that regions of left prefrontal cortex 

and posterior parietal cortex frequently co-activated, along with a region of anterior cingulate 

cortex. The tasks most likely to co-activate these regions were working memory, explicit 

memory and language tasks. The observed locations closely resembled a network of voxels that 
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co-activated at rest among a much smaller cohort of volunteers (a set of findings that has been 

replicated, e.g. Wisner, Atluri, Lim, & MacDonald, 2013), suggesting that intrinsic fluctuations 

may reflect co-activation among the regions with shared profiles of task-evoked function (Deco, 

Jirsa, & McIntosh, 2011).  

 

Intrinsic approaches provide a new complement to task-based study designs, and the ease of 

collection and flexibility of intrinsic analyses has led to a rapid rise in their popularity. This is 

particularly true for clinical researchers, as the derived markers of intrinsic network function are 

more widely applicable than traditional measures of task-based fMRI. Since intrinsic network 

function can be assessed during sleep and under anesthesia, this functional mapping approach 

may be widely implemented in diverse populations including children, non-English speaking 

participants, developmentally delayed patients, and patients who are under sedation. The 

promise of resting-state scanning has undergirded the accumulation of large-scale datasets that 

would be difficult if not impossible to obtained through more traditional task-based approaches. 

Open access samples in the thousands are now widely available to the broader scientific 

community, such as the 1000 Functional Connectomes Project (Biswal et al., 2010), the Brain 

Genomics Superstruct Project (Holmes et al., 2015), the Human Connectome Project (Van 

Essen et al., 2013), and the UK Biobank (Ollier, Sprosen, & Peakman, 2005).  

 

Despite the putative simplicity of intrinsic function studies, there remain a number of outstanding 

questions when acquiring and interpreting these data: what are the implications of collecting 

data with eyes open or closed (Van Dijk et al., 2010), with or without eye tracking, or if 

performing a low-level periodic response task (Krienen, Yeo, & Buckner, 2014)? How much data 

need to be collected to measure properties such as connectivity strength or network coherence 

reliably (Zuo et al., 2014)? This is a dynamic area of work with constantly emerging findings. 

Whatever the answers may be, intrinsic functional connectivity does have heritable 

characteristics (Ge, Holmes, Buckner, Smoller, & Sabuncu, 2017) that may be informative about 

the nature of psychopathology (Baker et al., 2014).  

 

Table 1. Experimental approaches using functional magnetic resonance imaging 

Method Application Strengths Limitations Key References 
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Block design 
(task evoked) 

Contrasts 
conditions within 
an on-going task 
or between an on-
going task and 
rest 

Efficient data collection; 
maximizes potential 
activation differences 

Difficult to attribute activation 
to a specific cognitive 
mechanism when contrasted 
tasks differ in several 
demands; difficult to exclude 
errors from analysis; requires 
task development 

(Amaro & 
Barker, 2006) 

Slow event-
related design 
(task evoked) 

Contrasts 
different trial 
types or cognitive 
demands sparsely 
timed 

Different events may be 
intermixed in an 
unpredictable manner; 
relatively few 
assumptions about the 
nature of the 
hemodynamic response; 
few constraints on the 
interactions (or 
dependencies) between 
different cognitive 
demands; behavioral 
results often generalize 
to faster-paced versions; 
trials that fulfill a 
criterion (e.g. error trials) 
can be examined 

Because hemodynamic 
response must return to 
baseline between trials, fewer 
trials can be collected; fewer 
trials for the evaluation of 
behavioral performance; 
boredom due to slow pace; 
requires task development 

(Amaro & 
Barker, 2006) 

Fast event-
related design 
(task evoked) 

Contrasts 
different trial 
types or cognitive 
demands more 
densely timed 

As with slow event-
related designs, different 
events may be 
intermixed; behavioral 
results are more robust 
because more trials are 
available; trials that fulfill 
a criterion (e.g. error 
trials) can be examined 
if sufficiently 
independent 

Hemodynamic response 
function modeling required; 
events must be sufficiently 
independent; jittering time 
between events or using 
partial (catch) trials to make 
events independent may affect 
performance; requires task 
development 

(Amaro & 
Barker, 2006) 
 
(Ollinger, 
Shulman, & 
Corbetta, 2001) 

Hybrid 
block/event-
related designs 
(task evoked) 

Nests an event-
related design 
within a larger 
block design to 
allow multiple 
analyses 

Allows for robust 
analyses present in 
block designs; 
additionally, trials that 
fulfill a criterion (e.g. 
error trials) can be 
examined separately 

Hemodynamic response 
function modeling required; 
events only occur within the 
context the block; requires 
task development 

(Braver, 
Reynolds, & 
Donaldson, 
2003) 
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Intrinsic function 
(“resting state”) 

Examines on-
going activity in 
the absence of 
specifically timed 
tasks or cognitive 
demands 

Shorter development 
cycle; shorter training 
and fewer task demands 
facilitating data 
collection in special-
needs populations; 
applicable to patients 
asleep or under 
sedation; easier to 
harmonize across sites 
and easier to combine 
datasets post-hoc 
facilitating larger sample 
sizes 

Brain activity cannot be related 
to specific cognitive events 
(but see Smith, et al., 2009); 
group/individual differences 
findings may reflect 
differences in habitual thought 
patterns rather than ability to 
activate a region; connectivity 
metrics affected by subtle 
head motion 

(Biswal, Yetkin, 
Haughton, & 
Hyde, 1995) 
 
(Smith et al., 
2013) 

 

3. Measurement and Neurometrics 
Whether observing the brain during task performance or not, it is important to consider several 

general points as we move from asking ‘basic’ questions regarding how the brain works to 

individual differences questions like how do brains function differently. Individual differences 

analyses evoke 4 R’s of measurement, robustness, repeatability, reliability and replicability. 

Robustness is the likelihood a given analytic approach will provide a consistent answer. 

Repeatability is the likelihood that the same pattern of findings will occur if the same group is 

measured again. Reliability is the extent to which the participants are at the same point in a 

distribution when measured again, showing a consistent pattern of individual differences. 

Finally, replicability is the likelihood that the same pattern of findings will occur in a new sample. 

 

The latter three, repeatability, reliability and replicability may be affected by various factors, such 

as caffeine (Laurienti et al., 2002), nicotine (Thiel & Fink, 2007), and ethanol (Seifritz et al., 

2000) intake, but also by more subtle variables such as glucose levels (Anderson et al., 2006) 

and cardiac variability (Shmueli et al., 2007). Before becoming overwhelmed, the investigator 

should consider the extent to which these factors will affect changes in the pattern of evoked 

BOLD response or intrinsic connectivity for which they will be searching. Similarly, are these 

factors going to be a source of noise (reducing power), or biases (introducing confounds)?  

 

III. Analysis 
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Analytic approaches for fMRI data have rapidly increased in complexity since the initial 

discovery of the BOLD contrast and the early efforts to use it to map human mental operations 

(for review see Raichle, 2009). Nevertheless, there are several principles that can be used to 

understand the current state of the field, as well as guide our anticipation of what advances may 

wait on the horizon. In this section, we will introduce the methods most frequently used in event-

related and intrinsic fMRI analyses, briefly discussing key advances that have shaped the field. 

For ease of interpretation, the analytic techniques, as well as their associated strengths and 

limitations, are presented in Tables 2 and 3. Critically, while these approaches can be applied 

individually, often two or more will be utilized within the same set of analyses. 

 

Table 2. Analytic techniques to examine task-evoked datasets 

Method Application Strengths Limitations Key References 

General linear 
model 

Estimates the 
contribution of 
known predictors 
to BOLD signal 
fluctuations.  

Mathematically simple, 
relatively easy to 
interpret, available in 
standard analysis 
packages; can include 
multiple independent 
variables (e.g., scanner 
drifts, participant 
motions, etc.) 

Relies on assumptions 
including a consistent 
hemodynamic response 
throughout the brain and 
the temporal stability of 
noise terms 

(Friston et al., 
1995) 

Psychophysiolog
ical interaction 

Examines the 
interaction 
between a task 
contrast of 
interest and the 
functional 
coupling between 
brain areas 

Can reveal a task-
specific change in 
correlation between 
areas that may not be 
evident through a 
shared effect of task 

Can only examine a 
single source area; 
Causal relations cannot 
be inferred  
 
 

(Friston et al., 
1997) 

Structural 
equation model 

Assesses the 
degree to which 
experimental 
manipulations 
influence the 
functional 
connectivity of 
brain regions 

Can be used for both 
exploratory and 
confirmatory testing; 
based on prior 
knowledge of brain 
structure/function; can 
estimate causal 
relations and be used 
across multiple regions 
simultaneously 

Can require a priori 
assumptions about 
causality, potentially 
obscuring other relations; 
lacks temporal 
information; assumes 
linearity 
 

(McIntosh & 
Gonzalezlima, 
1991) 
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Dynamic causal 
model 

Uses biologically 
plausible neuronal 
models of the 
BOLD response 
to estimates the 
influence of 
experimental 
context on the 
functional 
coupling among 
brain regions 

Uses hidden interactions 
at the neuronal-level to 
study observable shifts 
in BOLD response; 
models bidirectional and 
modulatory interactions; 
for a comparison on 
SEM and DCM 
approaches (See 
Penny, Stephan, 
Mechelli, & Friston, 
2004) 
 

Relies on pre-specified 
models and the 
inferences provided are 
only as valid as the priors 
used in the estimation 
procedure 
 

(Friston, 
Harrison, & 
Penny, 2003) 

Granger 
causality model  

Assesses the 
degree to which 
one time series 
can predict 
another 

Does not rely on a priori 
assumptions (e.g. 
regions of interest and 
associated connection) 

Assumes (local) 
stationarity, incorrect 
inferences can result 
from measurement noise 
and/or hemodynamic 
response latencies 
across brain 

(Kami, Ding, 
Truccolo, & 
Bressler, 2001) 

Meta/Mega-
analysis  

Assesses 
relations across 
multiple imaging 
datasets.  
Meta-analysis 
refers to the 
pooled analysis of 
published results; 
mega-analysis 
refers to the 
pooled analysis of 
raw data 

Can increase power due 
to the large number of 
studies/participants 
available for analysis; 
other approaches (e.g., 
estimates of effective 
connectivity) can utilized 
meta/mega-analysis 
defined regions-of-
interest 
 
 

Experimental designs 
may not be uniform 
and/or adequately 
sample the full spectrum 
of behavior and function; 
meta-analyses often 
consider the distribution 
of activation peaks, 
rather than each 
study’s/contrast’s 
distributed pattern of 
activity; relies on 
traditional contrast 
analyses, this can serve 
as a confound if the 
process of interest is not 
successfully isolated  

(Fox, Parsons, & 
Lancaster, 1998) 
 
(Laird et al., 
2005) 

 

1. Subtraction, Correlation, and Contrast Analyses. The evolution of block, fast event-

related, and hybrid fMRI designs was closely followed by the development of associated 

analytic methods. Initially, fMRI researchers leveraged approaches adapted from positron 

emission tomography (PET) where signal quality was greatly enhanced if participants were 

placed in a standard stereotaxic, or common physical space (Fox, Mintun, Reiman, & Raichle, 

1988). Once the individual participant data is registered to a common reference space the most 

straightforward and broadly applied method for obtaining results is to perform a simple 

subtraction across conditions of interest. Subtraction techniques, or more generally correlation 

analyses, are based on the expectation that the voxels/brain regions participating in a 

psychological or cognitive process should show dissociable functional responses during the 

completion of associated tasks. Rather than revealing absolute levels of cerebral blood flow or 
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metabolism linked to a cognitive process, contrast analyses reveal relative changes in BOLD 

response across conditions. By averaging the timepoints acquired during an experimental 

condition and subtracting the average of all the timepoints associated with a control condition, 

differing in only one property, the brain regions associated with a cognitive process of interest 

can be identified. 

 

While a growing proportion of fMRI studies go beyond subtraction logic to include parametric 

effects where the independent variable has a number of levels (e.g., task difficulty, stimulus 

intensity, monetary rewards), simple subtraction techniques are a powerful analytic approach. 

With an appropriate task design, they can be applied to pre-processed fMRI time courses using 

standard statistical techniques. Historically, subtraction analyses have provided foundational 

discoveries, characterizing the aspects of brain function that support key facets of cognition and 

behavior across health and disease. For example, consistent with a role in the modulation of 

affective functions, differential amygdala responses have been observed during the visual 

processing of emotional and neutral facial expressions in healthy populations (Breiter et al., 

1996). Dysregulated amygdala response to emotional stimuli is hypothesized to underlie the 

onset and maintenance of affective illness (Mayberg, 1997). In line with these theories, in 

patient populations subtraction techniques have revealed abnormal amygdala responses in 

disorders marked by affective impairments (Price & Drevets, 2012) and in populations at 

increased genetic risk for onset (Smoller et al., 2014). 

  

2. General linear models. The introduction of single-trial or event-related fMRI designs 

provided researchers the opportunity to separate mental operations into discrete moments in 

time, allowing for the differentiation of their associated fMRI signals (Huettel, 2012). The 

associated shift from representing BOLD responses as static across blocks of time to 

considering moment-to-moment fluctuations allowed researchers to leverage dynamic analysis 

methods. In this area, general linear models (GLMs; Introduced for fMRI analyses by Friston et 

al., 1994) are the primary analysis approach utilized in task-based research. The events in an 

event-related designs often occur so rapidly that their associated BOLD responses overlap. 

GLM analyses assume that the observed BOLD signal is comprised of a linear combination of 

experimental factors (thereby allowing overlapping responses) and an uncorrelated noise term. 

A GLM analysis identifies voxels where the signal changes in response to experimental 

conditions, or events, calculating the significance/extent of effects based on how well the 
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observed data fits the predicted model. These GLM-based approaches form the theoretical 

scaffolding that underlies most forms of fMRI data analysis, for instance the regression, 

prediction, and data exploration approaches detailed below. Importantly, GLM analyses are 

typically conducted in a mass univariate manner across each voxel, and there are several 

assumptions to keep in mind when utilizing GLM based approaches that can constrain our 

interpretation of the results (see Monti, 2011). These include the use of a single model (design 

matrix) throughout the brain, that noise varies consistently across all time points (e.g., baseline 

relative to a contrast of interest), and the independence of associated statistical tests. 

  

3. Multivariate modeling and predictive approaches. An important limitation of traditional 

GLM-based analytic techniques is that they treat each voxel as independent, assessing if the 

signal within these discrete data points fluctuate in response to a task condition of interest. They 

do not account for the possible contribution of complex multivariate relations linking multiple 

voxels. As the field has developed beyond this mass univariate approach, an increased 

emphasis has been placed on computationally sophisticated approaches for identifying spatially 

distributed patterns of brain activity (e.g., multi-voxel pattern analysis). For a more thorough 

treatment of the techniques from the field of machine learning and analytic approaches where 

specific mental states or task contexts are decoded from distributed activity patterns readers are 

referred to Chapter 35. In brief, these multivariate approaches are typically implemented in a 

two-step process. First, a classifier is trained to distinguish the occurrence of events for different 

conditions within a subset of the available data. Second, the trained model is then applied to an 

independent or held out sample where the classifier attempts to predict the events of interest. 

These approaches hold promise as a potential diagnostic tool for psychiatric illness, and their 

flexibility allows for their integration with other complementary processing and analyses 

techniques (Rosenberg, Casey, & Holmes, 2018). For instance, machine learning approaches 

have been used to discriminate male from female participants accurately (Chekroud, Ward, 

Rosenberg, & Holmes, 2016), identify dissociable cognitive trajectories in Alzheimer’s disease 

(Zhang et al., 2016) with gross morphometric estimates of brain anatomy, and predict individual 

participant attentional capacity, disease status (e.g., ADHD; Rosenberg et al., 2016), or 

symptomology through analyses of large-scale network function (e.g., presence of psychosis; 

Reinen et al., 2018). 
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4. Network modeling. Recently, researchers have begun to shift their emphasis from the 

study of the specialization or segregation of brain functions in isolated regions towards an 

analytic framework that targets functional integration, working to characterize how signals co-

vary across spatially distinct regions (for review see, Sporns, 2014). These distributed 

processing models of brain function provide a powerful method to explain complex cognitive 

functions, individual variation, and the behavioral expression of psychiatric illness. Network 

models allow researchers to represent brain systems as distributed sets of neural elements and 

their associated interconnections. The generation of these network models requires partitioning 

or parcellation aspects of the brain into regions, or nodes, that share a consistent set of 

features. Broadly, brain networks reflect two different categories. Structural networks that 

describe the anatomical wiring properties of the brain, and functional networks reflect 

interactions among time series (e.g., correlations) across anatomical parcels or regions of 

interest. Unsurprisingly, network approaches encompass much of the current research on brain 

functions ranging from the biophysical modeling of task data through the estimation of the 

integrity of resting-state networks. Figure 2 displays a collection of population intrinsic network 

parcellation schemes. Readers should note that the distinction between event-related (task-

evoked) and resting-state (intrinsic) analytic techniques is in many ways arbitrary. These 

methods each probe specific features of brain function, with an appropriate study design they 

can be applied across data types. 

  

5. Task-evoked functional connectivity. These analyses can be broadly separated into 

two classes. The first examine functional connectivity, or the temporal correlation of observed 

BOLD responses between remote neural areas, similar to the intrinsic techniques detailed 

below. The second are model-based approaches that assess effective connectivity, or the 

putative influence one brain system or region may exert on another. Prototypical effective 

connectivity analyses include psychophysiological interaction, structural equation (McIntosh & 

Gonzalezlima, 1991), dynamic causal, and Granger models (Friston et al., 2003). 

Psychophysiological interaction, for example, assesses whether connectivity varies between 

spatially distant brain regions in different psychological/task contexts (Friston et al., 1997). The 

presence of a psychophysiological interaction suggests that regional responses in the source 

area to an experimental or psychological factor are modulated by signals from a distal brain 

region. These approaches have revealed a host of key discoveries, for example, the aberrant 
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development of amygdala–prefrontal connectivity following maternal deprivation, potentially 

reflecting an ontogenetic adaptation in response to early adversity (Gee et al., 2013). 

 

Table 3. Analytic techniques of intrinsic brain function 

Method Application Strengths Limitations Key References 

Seed-based 

correlations 

Estimates the 

correlation between 
the BOLD signal in 

a predefined 

regions-of-interest 
with other regions, 

or rest of the brain 

Mathematically simple and 

easy to interpret 

Requires the a priori 

selection of regions; 
may provide illusory 

specificity 

(Biswal et al., 

1995) 

Regional 

homogeneity 

Uses Kendall’s 

coefficient 

concordance to 
assesses the 

similarity of the time 

series of a given 
voxel to those of its 

nearest neighbors 

Mathematically simple and 

easy to interpret 

Requires the a priori 

selection of regions; 

sensitive to spatial 
smoothing and the 

size of the region-

of-interest 

(Zang, Jiang, Lu, 

He, & Tian, 

2004) 

Local - Distant Takes into account 

local regional 
connections as well 

as remote or distant 

connections outside 
of a defined area 

Allows for the analyses of 

relative weighting of local or 
distant connectivity in a 

region 

Can conflate real 

cortical/anatomical 
distance with 

Euclidean distance  

 

(Sepulcre et al., 

2010) 

Principal 
component 

analysis 

Creates 
uncorrelated 

variables from 

best-fitting linear 
combinations of the 

variables in the raw 

data; reduces the 
dimensionality of 

complex data types  

Can reveal hidden, 
simplified, features in high 

dimensional data; does not 

require a priori task models 
or estimates of BOLD 

response  

 

Based on a strong 
assumption of 

linearity and 

orthogonality in the 
resulting 

components; 

sensitive to noise 
and assumes a high 

signal-to-noise ratio 

in the data 

(Friston, Frith, 
Liddle, & 

Frackowiak, 

1993) 
 

(Viviani, Gron, & 

Spitzer, 2005) 
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Independent 

component 
analysis 

An extension of 

principle component 
analysis that 

separates data into 

spatially or 
temporally 

independent 

patterns of activity 
 

Few a priori assumptions; 

not restricted to deriving 
orthogonal components 

Components are 

assumed to be 
statistically 

independent 

 

(McKeown & 

Sejnowski, 
1998) 

 

(Calhoun, Adali, 
& Pearlson, 

2002) 

 

 

6. Intrinsic functional connectivity. The convergence of new imaging technologies and 

increased computational resources has provided tools to map both local and distant 

connections in the brain (Holmes & Yeo, 2015). Recent work in this domain has established a 

strong correspondence between the structure of intrinsic (resting state) and extrinsic (co-

activation) brain networks, suggesting that the brain’s functional architecture at rest is closely 

linked to cognitive function (Smith et al., 2009; Tavor, Jones, Mars, & Smith, 2016). Aberrant 

patterns of connectivity within these networks are evident across many major mental disorders, 

indicating that their breakdown can lead to diverse forms of psychological dysfunction 

(Buckholtz & Meyer-Lindenberg, 2012). For instance, impaired connectivity within the 

frontoparietal control network, which encompasses portions of the dorsolateral prefrontal, 

dorsomedial prefrontal, lateral parietal, and posterior temporal cortices as well as corresponding 

aspects of the striatum and cerebellum (Yeo et al., 2011), is believed to underlie executive 

functioning deficits in psychotic illness (Baker et al., 2014; Reinen et al., 2018). A growing 

literature implicates frontoparietal network impairments as transdiagnostic markers of 

psychopathology (Cole, Repov, & Anticevic, 2014). A set of relationships that may emerge 

through the generation of symptoms that are domain-specific (e.g., impaired executive function), 

but cut across a many pathologies (Buckholtz & Meyer-Lindenberg, 2012).  

 

There are myriad ways that network functions can be probed with intrinsic approaches (Table 3; 

Figure 2). From flexibility in the definition of networks of interest, including the use hypothesis 
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derived ‘seed’ regions defined through meta-analyses of task data (Yarkoni, Poldrack, Nichols, 

Van Essen, & Wager, 2011) and population atlases of network function (Schaefer et al., 2017; 

Yeo et al., 2011), through the use of complex dynamic (Hutchison et al., 2013; Reinen et al., 

2018) and graph theoretical techniques (Sporns, 2014).  Approaches that allow researchers to 

map functional network topography down within a single person, for example, are critical for 

clinical intervention and the study of individual differences (Kong et al., 2017; Wang et al., 

2015). Research in this domain has led to the development of a cortical parcellation methods to 

accurately map the brain’s intrinsic functional organization at the individual level. Functional 

networks mapped by these techniques are highly reproducible within participants and effectively 

captured inter-subject variability (Wang et al., 2015). Providing converging evidence for the use 

of intrinsic connectivity when defining participant specific network topographies, these 

approaches have been validated by invasive cortical stimulation mapping in surgical patients, 

suggesting potential for use in clinical applications. 

 

One key factor to consider across all fMRI analyses, but particularly those that examine 

functional connectivity, is the impact of participant motion. This is a concern for clinical 

researchers who frequently have to contend with study populations that differ markedly in terms 

of both disease status and data quality. In the area of intrinsic analyses, for instance, motion 

generates nonlinear effects on functional connectivity that can either artificially induce or 

obscure hypothesized results (Van Dijk, Sabuncu, & Buckner, 2012). While these effects cannot 

simply be regressed out, there are processing approaches that can limit the impact of motion on 

substantive findings (e.g., motion scrubbing; Power et al., 2014; Ciric et al., 2017). Additionally, 

given the availability of large-scale fMRI databases that measures of brain structure and 

function as well as multiple domains of cognition, behavior, and genetics (e.g., Holmes et al., 

2015), some research groups have elected to carefully match patient and healthy comparison 

samples on the basis of data quality (e.g., Baker et al., 2014). The influence of data quality on 

connectivity analyses is a key point of consideration when interpreting case-control analyses, as 

patient populations often move more than healthy comparison samples. In the next section, we’ll 

turn to several additional problems faced by clinical cognitive neuroscience. 

 

IV. Interpretation 
If brain functions are involved in mental illness, it would seem that methods akin to taking 

pictures of the living brain and then developing them would provide an objective, biological 
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perspective on how that occurs. Of course, there are any number of reasons this simplistic 

optimism may not hold, but six criticisms of clinical cognitive neuroscience studies using 

neuroimaging stand out as particularly important to avoid. We hope the reader will note the 

challenge of satisfying all these constraints within a single study. 

 

1. Mechanistic Specificity. The challenges of behavioral experimental psychopathology 

transfer quite directly to clinical cognitive neuroscience and neuroimaging in particular. A 

prominent challenge is the difficulty of demonstrating that a deficit in performance on a task is 

mechanistically relevant to the disorder and not an epiphenomenal, or secondary, effect 

associated with the presence of illness. Deficits observed in isolation are uninterpretable. For 

example, when patients perform worse on a facial affect recognition task and have reduced 

fusiform gyrus activation we are tempted to conclude these two features are linked to the 

pathology. Yet the link may be tenuous. Rather than having a role in the symptoms of the 

disorder, the association between performance and brain activity may result from an earlier 

perceptual impairment, attention lapses, reduced effort on the task, or any of a number of other 

failures. More compelling would be to show that patients are worse on facial affect recognition 

relative to another task demand measured with equivalent discriminating power, or ability to 

distinguish between the groups being measured (see (Salem, Kring, & Kerr, 1996) for this 

particular comparison). Such deficits have been called differential deficits, mechanism-specific 

or specific cognitive deficits (for review, see Macdonald, 2015). Experiments using one 

condition, without a second condition that has similar levels of discriminating power, are 

obviously not up to this standard of evidence. More subtly in experiments with multiple 

conditions, if the condition of interest is measured with more discriminatory power, then patients 

may perform worse on it without actually tapping a mechanism related to the disorder. That is, 

the difference between patients and controls may derive from a nonspecific raft of difficulties 

patients face when performing behavioral tasks. 

 

 2. Causality confound. This confound refers to the concern that group differences in 

brain activity that occur when one group shows differences in performance may not be 

interpretable (Gur & Gur, 1995). In this case we wish to conclude that the difference in brain 

activation cause the observed performance differences, however we must also rule out the 

possibility that both the activation and performance differences reflect another, perhaps 

unmeasured, impairment. For example, lower motivation, compliance or visual acuity, 
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misunderstanding the task, higher distress, or any number of other failures could also impair 

performance and reduce task-related brain engagement. This challenge has caused a great 

deal of aggravation in clinical research because it runs counter to the goal of demonstrating 

mechanistic specificity (discussed above), which alone is quite a daunting task.  

Several approaches to this conundrum have been suggested, none of which fully 

addresses all of the potential concerns. The least satisfying approach has been to use tasks on 

which patients are unimpaired but which tap into a known deficiency (such as using a very easy 

working memory task). This is generally accomplished by taking advantage of a ceiling effect, 

rather than making the unmeasured impairment irrelevant. Three other approaches match 

performance in other ways. One way to match performance is to select patients and controls 

from their broader population distributions based on who performs at a comparable level. This 

solution falters because of the problem of generalization to the populations of interest. Another 

way to match performance is to train participants differently so that those who struggle more 

with the task receive more practice than those who naturally perform it better. This solution can 

be critiqued in so far as tasks that have become more automated often use different brain areas 

compared to more novel tasks. The third way to match performance is to titrate the difficulty of 

the task so all participants, and therefore groups, perform equally. This may be an ideal solution 

in many cases, however it means that group differences in activation reflect, in part, differences 

in the tasks they are performing. A final approach we have used is to examine only accurate 

trials using an event-related analysis, suggesting that the participant was engaged in the task 

during a given trial. One criticism of this approach is that to the extent that participants can 

respond accurately simply by chance then some proportion of those trials may still reflect an 

unmeasured spurious impairment. A second criticism is that it is overly conservative, insofar as 

part of the deficit of interest is the inability to respond accurately, and in this case there will be 

no group differences in brain regions that may be generally more difficult for patients to engage. 

These strategies and critiques are all an extension of concerns that come from using a quasi-

experimental methodology, with both within- and between-subject effects. Whereas the quest 

for mechanistic specificity leads us to test within-subject effects, we are still hampered from 

strong causal claims by the challenges of differences in performance.  

 

 3. Diagnostic and Symptom Specificity. Diagnostic specificity refers to the extent to 

which an impairment is disorder-specific versus common across a number of disorders. This 

concern arises especially from testing patients sampled from a single categorical diagnosis. For 
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example, early findings that patients with schizophrenia showed impairments in dorsolateral 

prefrontal cortical (DLPFC) functioning were greeted with excitement (Ingvar & Franzen, 1974). 

Subsequent findings of DLPFC dysfunction in many other disorders, from depression (Goodwin, 

1997) to substance abuse (Goldstein et al., 2004), may suggest that DLPFC dysfunction is less 

a cause of psychotic symptoms and perhaps more of a general psychopathology liability factor. 

Strikingly, a recent meta-analyses comparing task-related brain activation in people with a 

psychiatric illness and healthy controls reported few differences between the diagnostic 

constructs in terms of the distribution of case-control effects across the brain (537 studies, total 

n=21,427; Sprooten et al., 2017). The challenge of diagnostic specificity is not limited to 

categorical discriminations, however. In the era of meta-structural approaches to diagnosis 

(Holmes & Patrick, 2018), specificity refers to showing that an impairment relates more closely 

to a particular branch of psychopathology (e.g. thought disorder) than to other branches (e.g. 

externalizing or internalizing), or to general psychopathology (Lahey et al., 2012). This 

interpretive challenge can be addressed rigorously in a quasi-experimental design. Using a 

between-subjects design one can show that patients with an equal level of dysfunction with a 

different diagnosis show either performance or brain activation differences. Using a within-

subjects design, one can show that performance or brain activation differences correlate 

significantly more with one symptom factor relative to another using a Meng’s Z or other 

appropriate test for correlated correlation coefficients. These complimentary approaches allow 

researchers to demonstrate the presence of case/control differences in an aspect of brain 

biology and provide evidence that associated patterns of individual variability links with shifts in 

associated behaviors.  

 

4. Forward and Reverse Inference. The vast majority of neuroimaging research uses an 

approach termed ‘forward inference’ when probing the underlying biological architecture that 

supports cognitive functions (Henson, 2006). For example, when researchers manipulate stimuli 

to determine how the brain responds, forward inference proposes that a given experimental 

condition causes changes in local brain activity. Thus, dissociable BOLD responses can be 

used to distinguish between competing cognitive functions or theories. Critically, because 

forward inference is a correlational approach (see Subtraction, Correlation, and Contrast 

Analyses above), researchers cannot infer that the observed patterns of brain activity are either 

necessary or sufficient to support the associated cognitive process. However, as noted below, 

these shortcomings can be addressed through the integration of complementary methodology 
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across levels, for instance the optogenetic modulation of neural activity within freely-moving 

animals. 

 

‘Reverse inference’ is a different inferential strategy utilized by much of the field, at least 

informally, and fraught with controversy. Here, researchers make a claim about the engagement 

of a specific cognitive process based on the activation of a given brain region (Poldrack, 2006). 

As an example, a researcher might observe that patients with schizophrenia exhibit heightened 

amygdala responses to images of scenes (e.g., mountains, plains, forests), leading them to 

erroneously conclude that scene viewing is associated with the experience of fear in psychotic 

illness. This sort of inference is common within the clinical literature where the core cognitive 

processes underlying psychiatric illnesses remain unknown. Reverse inference provides a 

useful deductive tool for expanding our understanding of the underlying brain mechanisms 

supporting behavior. However, this is a particularly weak standard of evidence, insofar as brain 

regions and networks generally activate in response to many different demands (Poldrack, 

2006).  

 

The issues pertaining to reverse inference are a widespread concern. Clearly, researchers 

should be cautious when making claims regarding their results, particularly when the functional 

properties of a given region have yet to be fully established, or in the absence of converging 

evidence from other methods. Even factors outside of a researcher’s control can influence the 

accuracy of inferences, such as the number of voxels in an ROI or the selectivity of response in 

a given region of interest. Despite these limitations, reverse inferences can be exceptionally 

useful when applied judiciously, allowing researchers to relate cognitive processes across 

distinct theories and experimental contexts (Henson, 2006).  Reverse inference can also be 

used to generate hypotheses, particularly when based on real data. Critically, both reverse and 

forward inferences can be formalized within a probabilistic framework. They can then be used 

for meta/mega-analysis where they provide the opportunity for researchers to map links across 

diverse neural, cognitive, and disease states. These models provide the field with a powerful 

tool when coupled with the meta-analytic databases resulting from the recent development of 

text-mining and machine-learning techniques (Yarkoni et al., 2011). 

 

5. Regional differences in sensitivity. Whenever we write that patients are impaired in 

one brain region, we imply that they are not impaired in the other brain regions examined. 
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However, this implication is only true of other regions that we have measured at least as 

accurately, or sensitively, as the region where we found the group difference. The extent to 

which these other brain areas actually are measured as sensitively is largely ignored in the 

clinical imaging literature. Signal loss and susceptibility artifacts arise as a result of magnetic 

field inhomogeneities. In BOLD images, the decay in recoverable signal is exacerbated in 

regions where the brain is adjacent to air (e.g., sinus cavities). Clear spatial variation in voxel-

level temporal SNR (the mean of the signal at each voxel over the BOLD run divided by the 

variance) is evident across the cortical mantle (Holmes et al., 2015). The associated problem is 

simple to illustrate: brain regions A and B are both impaired in patients, however brain region A 

(say the anterior cingulate) is measured with very good signal to noise and region B (say the 

orbitofrontal cortex, subject to susceptibility artifact) is measured with low signal to noise. In 

reporting our findings without acknowledging these differences in SNR, we end up implying that 

region B is unimpaired. We see the growing interest in neurometrics, the study of imaging 

measurement akin to psychometrics, as an important development in clinical cognitive 

neuroscience (Poppe et al., 2013). A ready-to-hand check on this assumption is to examine 

signal-to-noise maps across the brain to see that the areas implicated in group differences are 

not simply those with the highest signal-to-noise. 

 

6. Cross-modality integration. FMRI provides a remarkably powerful technique for 

researchers to measure and map the functional networks in the human brain in both health and 

disease, albeit with the limitations inherent to all non-invasive approaches. For instance, recent 

fMRI work has demonstrated correspondence across the topographic structure of intrinsic and 

task-evoked functional networks of the human brain, suggesting that the features of the resting 

brain are closely linked to cognition (Crossley et al., 2013). Yet an integrated understanding of 

the complex neurobiological architecture of the human brain, from molecules through cells, 

circuits, and functional networks will not be possible with a single method or approach. Rather, 

progress in clinical neuroscience will be made through the combined efforts of researchers 

working across levels of analyses and species (Holmes & Patrick, 2018). In this regard, work 

that can join the heterogeneous information provided through distinct analytic approaches, 

including genetics, brain metabolism, anatomy, electrophysiology, and behavior has the 

potential to provide deep insights into the pathophysiology of psychiatric illness. The 

incorporation of methods that directly manipulate brain function, for instance lesion and 

optogenetic approaches in animal models or transcranial magnetic stimulation in humans, can 
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allow researchers to test the causal relations between brain and behavior observed in fMRI. 

(e.g., Deng, Yuan, & Dai, 2017). Coupling molecular and genetic approaches with fMRI, as 

another example, can nominate gene-profiles that preferentially associate with functional brain 

networks (Anderson et al., 2018; Richiardi et al., 2015), revealing the molecular machinery of 

network communication. 

 

V. Summary & Future Directions 

This chapter sought to bridge between the basic experimental world of cognitive neuroscience 

and that of clinical research. We hope that basic researchers will find in it links to questions they 

want to resolve when entering the correlational science of individual differences and clinical 

problems. Clinical researchers, in turn, should find here the tools to inform a clinical cognitive 

neuroscience approach to their populations, or the ideas needed to be informed consumers of 

such research. But whether the reader is more at home with a basic or a clinical perspective, 

clinical cognitive neuroscience remains an uncanny domain in which the most important 

achievements seem to be just over the horizon. 

 

On the one hand, advances in methodology and our understanding of brain functions seem to 

be advancing at an unprecedented speed. Within the last several years, there have been 

developments in spatial and temporal resolution of MRI equipment, larger samples allowing us 

to observe subtle effects, a growing number of algorithms to identify meaningful signals, and 

studies of the effects of genes on brain functioning, promising to remake the landscape of 

clinical cognitive neuroscience. At the same time, much of this excitement is familiar from 

previous episodes in which the field was enthusiastic about the potential of widespread non-

invasive imaging (in the 1990’s) and ever increasing magnetic field strength (in the 2000’s). 

While technological advances will continue to allow us to ask new questions, we should be 

sober about how these changes will affect our understanding of, and ultimately our ability to 

help, people with mental illness. The field is uncanny because that “just over the horizon” feeling 

drives us forward, but at the same time we need to gird ourselves for the likelihood that new 

insights may only fill in a few more pieces of a very large puzzle. 

 

Ultimately, our understanding of psychopathology will not come from MRI, a high throughput 

genetic chip, or a sophisticated data-mining algorithm. While these will continue to provide new 

and suggestive leads – and may even ultimately provide crucial elements for diagnosis and 
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prognosis – such technologies cannot bridge the final gap between the biological measurement 

and the fundamental experience of distress, threat or craving that make up the core of 

psychopathology. Researchers who are well-studied in these experiences, and those with 

firsthand knowledge, will need to work on both sides of the ledger – with these new sources or 

data, but also with the broad array of people’s thoughts, feelings and experiences, to assemble 

the final pieces of the puzzle of mental illness. 
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Figure 1. Different task conditions (gray boxes) and the corresponding convolution with a 

prototypical hemodynamic response function predict the rise and fall of the BOLD time course in 

an activated voxel across various experimental designs. Time proceeds from left to right. Note, 

the subtraction method of analysis (and derived brain maps) often compares the difference 

between the extent to which a voxel’s time course resembles the black predicted time course 

relative to the lighter grey.  
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Figure 2. A summary of intrinsic connectivity analyses methods and cortical parcellations based 

in-vivo brain imaging. (A) Intrinsic fluctuations in the fMRI BOLD signal exhibit patterns of 

covariation within functionally connected brain networks in the absence of overt task 

performance. Map of motor network from the seminal work by Biswal and colleagues (1995) as 

adapted by Vincent et al., (2006). (B) Selection of common analyses methods for intrinsic 

connectivity analyses (See Table 3). (C-E) Intrinsic fluctuations can be used to derive in-vivo 

brain parcellation. (C) Shen et al. (2013), (D) Power et al. (2011), and (E) Schaefer et al. (2017). 

(F) Multimodal parcellation using intrinsic connectivity, relative myelin mapping, cortical 

thickness and task-based fMRI (Glasser et al., 2016). Figures courtesy of authors and used with 

permission.  
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