Figure 1. De-coupling of network structure and function in schizophrenia. (a) Shows an example of a brain-wide map of structural connectivity deficits in patients with schizophrenia, highlighting a relatively diffuse impairment that particularly affects fronto-posterior anatomical connectivity. In this whole-brain analysis, no increases of structural connectivity were found. Letters denote different regions (see below for key). (b) Illustrates frontal regions showing decreased and increased functional connectivity with seed regions in the dorsal (top) and ventral (bottom) caudate nucleus, respectively, in patients with schizophrenia (yellow, blue) and their unaffected, first-degree relatives (magenta, green). Thus, despite a fairly global impairment of structural connectivity (depicted in (a)), systems-specific increases in functional connectivity can be observed (b). (c,d) Brain-wide alterations of structural (c) and functional (d) connectivity in the same sample of patients with schizophrenia. Blue and green depict links where anatomical and functional connectivity, respectively, were reduced in patients; red depicts links where functional connectivity was increased in the patient group. (a) reproduced from [24•], (b) from [18•], and (c,d) from [23••] with permission. Regional abbreviations in (a) are as follow: A. Left Superior Frontal, B. Right Superior Frontal, C. Left Supplementary Motor Area, D. Left Superior Medial Frontal, E. Right Supplementary Motor Area, F. Right Superior Medial Frontal, G. Right Superior Parietal, H. Right Superior Occipital, I. Left Cuneus, J. Left Superior Occipital, K. Left Precuneus, L. Right Precuneus, M. Left Middle Temporal, N. Left Middle Occipital, O. Left Inferior Temporal, P. Left Fusiform, Q. Right Cuneus, R. Left Hippocampus, S. Left Middle Cingulum.
Fig 1. Power and variance of CGm signal in SCZ and BD. (A) Power of CGm signal in 90 SCZ patients (red) relative to 90 HCS (black) (see SI Appendix, Table S1 for demographics). (B) Mean power across all frequencies before and after GSR indicating an increase in SCZ [F(1, 178) = 7.42, P < 0.01], and attenuation by GSR [F(1, 178) = 5.37, P < 0.025]. (C) CGm variance also showed increases in SCZ [F(1, 178) = 7.25, P < 0.01] and GSR-induced reduction in SCZ [F(1, 178) = 5.25, P < 0.025]. (D–F) Independent SCZ sample (see SI Appendix, Table S2 for demographics), confirming increased CGm power [F(1, 143) = 9.2, P < 0.01] and variance [F(1, 143) = 9.25, P < 0.01] effects, but also the attenuating impact of GSR on power [F(1, 143) = 7.75, P < 0.01] and variance [F(1, 143) = 8.1, P < 0.01]. (G–I) Results for BD patients (n = 73) relative to matched HCS (see SI Appendix, Table S3 for demographics) did not reveal GSR effects observed in SCZ samples [F(1, 127) = 2.89, P = 0.092, n.s.] and no evidence for increase in CGm power or variance. All effects remained when examining all gray matter voxels (SI Appendix, Fig. S1). Error bars mark ± 1 SEM. ***P < 0.001 level of significance. n.s., not significant.
Fig 2. Relationship between SCZ symptoms and CGm BOLD signal power. We extracted average CGm power for each patient with available symptom ratings (n = 153). (A) Significant positive relationship between CGm power and symptom ratings in SCZ (r = 0.18, P < 0.03), verified using Spearman’s ρ given somewhat nonnormally distributed data (ρ = 0.2, P < 0.015). (B and C) Results held across SCZ samples, increasing confidence in the effect (i.e., joint probability of independent effects P < 0.002, marked in blue boxes). All identified relationships held when examining Gm variance (SI Appendix, Fig. S4). Notably, all effects were no longer significant after GSR, suggesting GS carries clinically meaningful information. The shaded area marks the 95% confidence interval around the best-fit line.
Cantor-Graae, E., & Selten, J.-P. (2005). Schizophrenia and migration: A meta-analysis and review. The American Journal of Psychiatry, 162(1), 12–24. https://doi.org/10.1176/appi.ajp.162.1.12
Davis, K. L., Buchsbaum, M. S., Shihabuddin, L., Spiegel-Cohen, J., Metzger, M., Frecska, E., … Powchik, P. (1998). Ventricular enlargement in poor-outcome schizophrenia. Biological Psychiatry, 43(11), 783–793. https://doi.org/10.1016/s0006-3223(97)00553-2
Debost, J.-C., Petersen, L., Grove, J., Hedemand, A., Khashan, A., Henriksen, T., … Mortensen, P. B. (2015). Investigating interactions between early life stress and two single nucleotide polymorphisms in HSD11B2 on the risk of schizophrenia. Psychoneuroendocrinology, 60, 18–27. https://doi.org/10.1016/j.psyneuen.2015.05.013
Erp, T. G. M. van, Hibar, D. P., Rasmussen, J. M., Glahn, D. C., Pearlson, G. D., Andreassen, O. A., … Turner, J. A. (2015). Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium. Mol. Psychiatry. https://doi.org/10.1038/mp.2015.63
Fornito, A., & Bullmore, E. T. (2015). Reconciling abnormalities of brain network structure and function in schizophrenia. Curr. Opin. Neurobiol., 30, 44–50. https://doi.org/10.1016/j.conb.2014.08.006
Jiao, H.-F., Sun, X.-D., Bates, R., Xiong, L., Zhang, L., Liu, F., … Mei, L. (2017). Transmembrane protein 108 is required for glutamatergic transmission in dentate gyrus. Proceedings of the National Academy of Sciences, 114(5), 1177–1182. https://doi.org/10.1073/pnas.1618213114
Johnson, E. C., Border, R., Melroy-Greif, W. E., Leeuw, C. A. de, Ehringer, M. A., & Keller, M. C. (2017). No evidence that schizophrenia candidate genes are more associated with schizophrenia than noncandidate genes. Biol. Psychiatry, 82(10), 702–708. https://doi.org/10.1016/j.biopsych.2017.06.033
Kelly, S., Jahanshad, N., Zalesky, A., Kochunov, P., Agartz, I., Alloza, C., … Donohoe, G. (2017). Widespread white matter microstructural differences in schizophrenia across 4322 individuals: Results from the ENIGMA schizophrenia DTI working group. Mol. Psychiatry. https://doi.org/10.1038/mp.2017.170
Kempton, M. J., Stahl, D., Williams, S. C. R., & DeLisi, L. E. (2010). Progressive lateral ventricular enlargement in schizophrenia: A meta-analysis of longitudinal MRI studies. Schizophr. Res., 120(1-3), 54–62. https://doi.org/10.1016/j.schres.2010.03.036
Kochunov, P., Ganjgahi, H., Winkler, A., Kelly, S., Shukla, D. K., Du, X., … Hong, L. E. (2016). Heterochronicity of white matter development and aging explains regional patient control differences in schizophrenia. Hum. Brain Mapp., 37(12), 4673–4688. https://doi.org/10.1002/hbm.23336
Levine, S. Z., Levav, I., Pugachova, I., Yoffe, R., & Becher, Y. (2016). Transgenerational effects of genocide exposure on the risk and course of schizophrenia: A population-based study. Schizophrenia Research, 176(2), 540–545. https://doi.org/10.1016/j.schres.2016.06.019
Os, J. van, & Kapur, S. (2009). Schizophrenia. The Lancet, 374(9690), 635–645. https://doi.org/10.1016/S0140-6736(09)60995-8
Seutin, V. (2005). Dopaminergic neurones: Much more than dopamine? Br. J. Pharmacol., 146(2), 167–169. https://doi.org/10.1038/sj.bjp.0706328
Suddath, R. L., Christison, G. W., Torrey, E. F., Casanova, M. F., & Weinberger, D. R. (1990). Anatomical abnormalities in the brains of monozygotic twins discordant for schizophrenia. The New England Journal of Medicine, 322(12), 789–794. https://doi.org/10.1056/NEJM199003223221201
Thompson, P. M., Vidal, C., Giedd, J. N., Gochman, P., Blumenthal, J., Nicolson, R., … Rapoport, J. L. (2001). Mapping adolescent brain change reveals dynamic wave of accelerated gray matter loss in very early-onset schizophrenia. Proceedings of the National Academy of Sciences, 98(20), 11650–11655. https://doi.org/10.1073/pnas.201243998
Uhlhaas, P. J. (2013). Dysconnectivity, large-scale networks and neuronal dynamics in schizophrenia. Curr. Opin. Neurobiol., 23(2), 283–290. https://doi.org/10.1016/j.conb.2012.11.004
Yang, G. J., Murray, J. D., Repovs, G., Cole, M. W., Savic, A., Glasser, M. F., … Anticevic, A. (2014). Altered global brain signal in schizophrenia. Proc. Natl. Acad. Sci. U. S. A., 111(20), 7438–7443. https://doi.org/10.1073/pnas.1405289111