Left Hippocampus
Right Hippocampus
[a] patients v. ctrls, [b] patients on SSRIs, [c] patients v. ctrls (happy stim), [d] patients v. controls (sad stim)
Figure 1. Representation of Similarities and Differences in Functional Magnetic Resonance Imaging (fMRI) Activation Patterns in Key Brain Areas Associated with Postpartum Depression (PPD), Major Depressive Disorder (MDD), and Generalized Anxiety Disorder (GAD). Dots in (A) (PPD) indicate change in activation in response to infant or non-infant cues (e.g., AMG activation is increased in response to emotional infant cues, but decreased in response to emotional non-infant cues). Dots in (B) (MDD/GAD) indicate that the same brain area is activated in response to an emotional cue in both disorders (e.g., AMG activation is increased in both MDD and GAD). Brain areas highlighted have key roles in neural networks associated with stress regulation, reward, motivation, sensory processing, and executive functioning and, thus, have the capacity to affect a range of maternal activities. For example, prefrontal cortical areas (DMPFC, DLPFC, OFC, IFG, and SFG) have important roles in executive functioning and self regulation; the IC is critical for emotional processing, cognition and perception; the limbic system (ACC, PCC, HPC, and AMG) is well known for its role in stress regulation, emotion, cognition, motivation, and social responding; the striatum (STR, NaCC, and CN), VTA, and SN are key for learned reinforcement processing; and the PAG and THAL have key roles in sensory processing (reviewed in 30, 47, 149, 150). Abbreviations: ACC, anterior cingulate cortex; AMG, amygdala; CN, caudate nucleus; DLPFC, dorsal lateral prefrontal cortex; DMPFC, dorsal medial prefrontal cortex; HPC, hippocampus; IC, insular cortex; IFG, inferior frontal gyrus; NaCC, nucleus accumbens; OFC, orbital frontal cortex; PAG, periaquaductal gray; PCC, posterior cingulate cortex; SFG, superior frontal gyrus; SN, substantia nigra; STR, striatum; THAL, thalamus; VTA, ventral tegmental area.
CCN (yellow); precuneus, part of DMN (pink); and affective division of the ACC (turquoise)
Fig. 2. Group by time interaction effects of psychological therapies. There was a significant group by time interaction in the left rostral anterior cingulate cortex, in which participants with major depression showed increased activity following psychological therapy while healthy participants showed a reduction in activity at the follow up scan. Sagittal (x), coronal (y), and axial (x) coordinates for each section are presented. Results are P < 0.05 FDR corrected.
Fig. 3. Longitudinal changes following psychological therapies. There was a main effect of in the left precentral gyrus, which showed decreased activity following psychological therapy in major depression. The coronal (y) coordinate of each section is presented. There were additional regions which did not meet our threshold of 50 mm3 for significance. Results are P < 0.05 FDR corrected.
“…we performed the first meta-analysis of the mood effects in ATD and APTD studies. The depletion of monoamine systems (both 5-HT and NE/DA) does not decrease mood in healthy controls. However, in healthy controls with a family history of MDD the results suggest that mood is slightly decreased…by [monoamine depletion]…”
Audhya, T., Adams, J. B., & Johansen, L. (2012). Correlation of serotonin levels in CSF, platelets, plasma, and urine. Biochimica et Biophysica Acta, 1820(10), 1496–1501. https://doi.org/10.1016/j.bbagen.2012.05.012
Berman, R. M., Cappiello, A., Anand, A., Oren, D. A., Heninger, G. R., Charney, D. S., & Krystal, J. H. (2000). Antidepressant effects of ketamine in depressed patients. Biol. Psychiatry, 47(4), 351–354. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/10686270
Burke, H. M., Davis, M. C., Otte, C., & Mohr, D. C. (2005). Depression and cortisol responses to psychological stress: A meta-analysis. Psychoneuroendocrinology, 30(9), 846–856. https://doi.org/10.1016/j.psyneuen.2005.02.010
Cheng, W., Rolls, E. T., Qiu, J., Liu, W., Tang, Y., Huang, C.-C., … Feng, J. (2016). Medial reward and lateral non-reward orbitofrontal cortex circuits change in opposite directions in depression. Brain, aww255. https://doi.org/10.1093/brain/aww255
Corriger, A., & Pickering, G. (2019). Ketamine and depression: A narrative review. Drug Design, Development and Therapy, 13, 3051–3067. https://doi.org/10.2147/DDDT.S221437
Dierckx, B., Heijnen, W. T., Broek, W. W. van den, & Birkenhäger, T. K. (2012). Efficacy of electroconvulsive therapy in bipolar versus unipolar major depression: A meta-analysis. Bipolar Disorders, 14(2), 146–150. https://doi.org/10.1111/j.1399-5618.2012.00997.x
Duman, R. S., & Voleti, B. (2012). Signaling pathways underlying the pathophysiology and treatment of depression: Novel mechanisms for rapid-acting agents. Trends Neurosci., 35(1), 47–56. https://doi.org/10.1016/j.tins.2011.11.004
Fitzgerald, P. B., Laird, A. R., Maller, J., & Daskalakis, Z. J. (2008). A meta-analytic study of changes in brain activation in depression. Human Brain Mapping, 29(6), 683–695. https://doi.org/10.1002/hbm.20426
Frohlich, J., & Van Horn, J. D. (2014). Reviewing the ketamine model for schizophrenia. J. Psychopharmacol., 28(4), 287–302. https://doi.org/10.1177/0269881113512909
Goldstein-Piekarski, A. N., Korgaonkar, M. S., Green, E., Suppes, T., Schatzberg, A. F., Hastie, T., … Williams, L. M. (2016). Human amygdala engagement moderated by early life stress exposure is a biobehavioral target for predicting recovery on antidepressants. Proceedings of the National Academy of Sciences, 113(42), 11955–11960. https://doi.org/10.1073/pnas.1606671113
Hamilton, J. P., Etkin, A., Furman, D. J., Lemus, M. G., Johnson, R. F., & Gotlib, I. H. (2012). Functional neuroimaging of major depressive disorder: A Meta-Analysis and new integration of baseline activation and neural response data. AJP, 169(7), 693–703. https://doi.org/10.1176/appi.ajp.2012.11071105
Leung, J., Selvage, C., Bosdet, T., Branov, J., Rosen-Heath, A., Bishop, C., … Horvath, G. (2018). Salivary serotonin does not correlate with central serotonin turnover in adult phenylketonuria (PKU) patients. Molecular Genetics and Metabolism Reports, 15, 100–105. https://doi.org/10.1016/j.ymgmr.2018.03.008
Li, N., Lee, B., Liu, R.-J., Banasr, M., Dwyer, J. M., Iwata, M., … Duman, R. S. (2010). mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science, 329(5994), 959–964. https://doi.org/10.1126/science.1190287
Mahar, I., Bambico, F. R., Mechawar, N., & Nobrega, J. N. (2014). Stress, serotonin, and hippocampal neurogenesis in relation to depression and antidepressant effects. Neuroscience & Biobehavioral Reviews, 38, 173–192. https://doi.org/10.1016/j.neubiorev.2013.11.009
Medici, M., Direk, N., Visser, W. E., Korevaar, T. I. M., Hofman, A., Visser, T. J., … Peeters, R. P. (2014). Thyroid function within the normal range and the risk of depression: A population-based cohort study. J. Clin. Endocrinol. Metab., 99(4), 1213–1219. https://doi.org/10.1210/jc.2013-3589
Palazidou, E. (2012). The neurobiology of depression. British Medical Bulletin, 101, 127–145. https://doi.org/10.1093/bmb/lds004
Pawluski, J. L., Lonstein, J. S., & Fleming, A. S. (2017). The neurobiology of postpartum anxiety and depression. Trends in Neurosciences, 40(2), 106–120. https://doi.org/10.1016/j.tins.2016.11.009
Ruhé, H. G., Mason, N. S., & Schene, A. H. (2007). Mood is indirectly related to serotonin, norepinephrine and dopamine levels in humans: A meta-analysis of monoamine depletion studies. Molecular Psychiatry, 12(4), 331–359. https://doi.org/10.1038/sj.mp.4001949
Samuelsson, M., Jokinen, J., Nordström, A.-L., & Nordström, P. (2006). CSF 5-HIAA, suicide intent and hopelessness in the prediction of early suicide in male high-risk suicide attempters. Acta Psychiatrica Scandinavica, 113(1), 44–47. https://doi.org/10.1111/j.1600-0447.2005.00639.x
Sankar, A., Melin, A., Lorenzetti, V., Horton, P., Costafreda, S. G., & Fu, C. H. Y. (2018). A systematic review and meta-analysis of the neural correlates of psychological therapies in major depression. Psychiatry Research. Neuroimaging, 279, 31–39. https://doi.org/10.1016/j.pscychresns.2018.07.002
Sheline, Y. I., Price, J. L., Yan, Z., & Mintun, M. A. (2010). Resting-state functional MRI in depression unmasks increased connectivity between networks via the dorsal nexus. Proc. Natl. Acad. Sci. U. S. A., 107(24), 11020–11025. https://doi.org/10.1073/pnas.1000446107
Sullivan, P. F., Neale, M. C., & Kendler, K. S. (2000). Genetic epidemiology of major depression: Review and meta-analysis. The American Journal of Psychiatry, 157(10), 1552–1562. https://doi.org/10.1176/appi.ajp.157.10.1552
Tiger, M., Svenningsson, P., Nord, M., Jabre, S., Halldin, C., & Lundberg, J. (2015). No correlation between serotonin and its metabolite 5-HIAA in the cerebrospinal fluid and [11C]AZ10419369 binding measured with PET in healthy volunteers. Retrieved from http://hdl.handle.net/10616/44513
Vandeleur, C. L., Fassassi, S., Castelao, E., Glaus, J., Strippoli, M.-P. F., Lasserre, A. M., … Preisig, M. (2017). Prevalence and correlates of DSM-5 major depressive and related disorders in the community. Psychiatry Research, 250, 50–58. https://doi.org/10.1016/j.psychres.2017.01.060
Videbech, P., & Ravnkilde, B. (2004). Hippocampal volume and depression: A meta-analysis of MRI studies. Am. J. Psychiatry, 161(11), 1957–1966. https://doi.org/10.1176/appi.ajp.161.11.1957
Wohleb, E. S., Franklin, T., Iwata, M., & Duman, R. S. (2016). Integrating neuroimmune systems in the neurobiology of depression. Nature Reviews. Neuroscience, 17(8), 497–511. https://doi.org/10.1038/nrn.2016.69
Zarate, C. A., Jr, Singh, J. B., Carlson, P. J., Brutsche, N. E., Ameli, R., Luckenbaugh, D. A., … Manji, H. K. (2006). A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch. Gen. Psychiatry, 63(8), 856–864. https://doi.org/10.1001/archpsyc.63.8.856