“These findings challenge the common view that humans stand out from other primates in their brain composition and indicate that, with regard to numbers of neuronal and nonneuronal cells, the human brain is an isometrically scaled-up primate brain.”
Morphology, physiology, gene transcription
C Elegans swimming.
\[E = IR\]
Neuron at rest permeable to \(K^+\)
Equilibrium potential and the Nernst equation
Neuron at resting potential has low \(Na^+\) permeability
\(Na^+\) concentrated outside neuron (~145 mM) vs. inside (~12 mM)
Equilibrium potential is positive (with respect to outside)
Some \(Na^+\) flows in
Calculate net effects of ion flow across membrane via
Goldman-Hodgkin-Katz equation
Summary of forces
Ion | Concentration gradient | Electrostatic force |
---|---|---|
\(K^+\) | Inside >> Outside, outward | - (pulls \(K^+\) in) |
\(Na^+\) | Outside >> Inside, inward | - (pulls \(Na^+\) in) |
Under typical conditions
Ion | [inside] | [outside] | Voltage |
---|---|---|---|
\(K^+\) | ~150 mM | ~4 mM | ~ -90 mV |
\(Na^+\) | ~10 mM | ~140 mM | ~ +55-60 mV |
\(Cl-\) | ~10 mM | ~110 mM | - 65-80 mV |
Phase | Neuron State |
---|---|
Resting potential | Passive \(K^+\) allow outward flow; passive \(Na^+\) allow inward flow; \(Na^+\)/\(K^+\) moves \(K^+\) in and \(Na^+\) out |
Rise to threshold | + input makes membrane potential more + |
Rising phase | Voltage-gated \(Na^+\) channels open, \(Na^+\) enters |
Peak | Voltage-gated \(Na^+\) channels close and deactivate; voltage-gated \(K^+\) channels open |
Falling phase | \(K^+\) exits |
Refractory period | \(Na^+\)/\(K^+\) pump restores [\(Na^+\)], [\(K^+\)]; voltage-gated \(K^+\) channels close |
Resting potential | Passive \(K^+\) allow outward flow; passive \(Na^+\) allow inward flow; \(Na^+\)/\(K^+\) moves \(K^+\) in and \(Na^+\) out |
Phase | Ion | Driving force | Flow direction | Flow magnitude |
---|---|---|---|---|
Rest | \(K^+\) | 20 mV | out | small |
\(Na^+\) | 125 mV | in | small |
Phase | Ion | Driving force | Flow direction | Flow magnitude |
---|---|---|---|---|
Rising | \(K^+\) | growing | out | growing |
\(Na^+\) | shrinking | in | high |
Phase | Ion | Driving force | Flow direction | Flow magnitude |
---|---|---|---|---|
Peak | \(K^+\) | 120 mV | out | high |
\(Na^+\) | 20 mV | in | small |
Phase | Ion | Driving force | Flow direction | Flow magnitude |
---|---|---|---|---|
Falling | K | shrinking | out | high |
\(Na^+\) | growing | in | small |
Absolute
Relative
Phase | Ion | Driving force | Flow direction | Flow magnitude |
---|---|---|---|---|
Refractory | K | ~0 mV | out | small |
\(Na^+\) | 145 mV | in | small |
Conduction velocities
Hodgkin-Huxley Equations
Azevedo, F. A., Carvalho, L. R., Grinberg, L. T., Farfel, J. M., Ferretti, R. E., Leite, R. E., … others. (2009). Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. Journal of Comparative Neurology, 513(5), 532–541. https://doi.org/10.1002/cne.21974
Boldog, E., Bakken, T. E., Hodge, R. D., Novotny, M., Aevermann, B. D., Baka, J., … Tamás, G. (2018). Transcriptomic and morphophysiological evidence for a specialized human cortical GABAergic cell type. Nature Neuroscience, 21(9), 1185–1195. https://doi.org/10.1038/s41593-018-0205-2
Chung, W.-S., Welsh, C. A., Barres, B. A., & Stevens, B. (2015). Do glia drive synaptic and cognitive impairment in disease? Nature Neuroscience, 18(11), 1539–1545. https://doi.org/10.1038/nn.4142
Eyherabide, H. G., Rokem, A., Herz, A. V. M., Samengo, I., Eyherabide, H. G., Rokem, A., … Samengo, I. (2009). Bursts generate a non-reducible spike-pattern code. Frontiers in Neuroscience, 3, 1. https://doi.org/10.3389/neuro.01.002.2009