“Seen in the light of evolution, biology is, perhaps, intellectually the most satisfying and inspiring science. Without that light, it becomes a pile of sundry facts some of them interesting or curious, but making no meaningful picture as a whole.”
An animal with a nerve “net”
Cephalopods have “intelligent arms”
Structural measure | Non-human comparison | Human |
---|---|---|
Cortical gray matter %/tot brain vol | insectivores 25% | 50% |
Cortical gray + white | mice 40% | 80% |
Cerebellar mass | primates, mammals 10-15% | 10-15% |
Take homes
Old story
vs. New story
# of cortical (or in birds, pallidum) neurons predicts “cognition”?
The Human Advantage (Herculano-Houzel, 2016)
A further human advantage
Radial unit hypothesis
Axon growth cone
Glia migrate, too
“Control” networks
non-“control” networks
The “development” of developmental connectomics
Myelination changes “network” properties
Synaptic rearrangment, myelination change cortical thickness
a, Comparison between DCX expression in HIP and the density of DCX-immunopositive cells in the human dentate gyrus36. b, Comparison between transcriptome-based dendrite development trajectory in DFC and Golgi-method-based growth of basal dendrites of layer 3 (L3) and 5 (L5) pyramidal neurons in the human DFC41. c, Comparison between transcriptome-based synapse development trajectory in DFC and density of DFC synapses calculated using electron microscopy42. For b and c, PC1 for gene expression was plotted against age to represent the developmental trajectory of genes associated with dendrite (b) or synapse (c) development. Independent data sets were centred, scaled and plotted on a logarithmic scale. d, PC1 value for the indicated sets of genes (expressed as percentage of maximum) plotted against age to represent general trends and regional differences in several neurodevelopmental processes in NCX, HIP and CBC.
Major division | Ventricular Landmark | Embryonic Division | Structure |
---|---|---|---|
Forebrain | Lateral | Telencephalon | Cerebral cortex |
Basal ganglia | |||
Hippocampus, amygdala | |||
Third | Diencephalon | Thalamus | |
Hypothalamus | |||
Midbrain | Cerebral Aqueduct | Mesencephalon | Tectum, tegmentum |
Hindbrain | 4th | Metencephalon | Cerebellum, pons |
– | Mylencephalon | Medulla oblongata |
Arendt, D., Tosches, M. A., & Marlow, H. (2016). From nerve net to nerve ring, nerve cord and brain — evolution of the nervous system. Nature Reviews Neuroscience, 17(1), 61–72. https://doi.org/10.1038/nrn.2015.15
Baumann, N., & Pham-Dinh, D. (2001). Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiological Reviews, 81(2), 871–927. https://doi.org/10.1152/physrev.2001.81.2.871
Cao, M., Huang, H., & He, Y. (2017). Developmental connectomics from infancy through early childhood. Trends in Neuroscience, 40(8), 494–506. https://doi.org/10.1016/j.tins.2017.06.003
Chi, J. G., Dooling, E. C., & Gilles, F. H. (1977). Gyral development of the human brain. Ann. Neurol., 1(1), 86–93. https://doi.org/10.1002/ana.410010109
Dobzhansky, T. (1973). Nothing in biology makes sense except in the light of evolution. The American Biology Teacher, 35(3), pp. 125–129. Retrieved from http://www.jstor.org/stable/4444260
Gogtay, N., Giedd, J. N., Lusk, L., Hayashi, K. M., Greenstein, D., Vaituzis, A. C., … Thompson, P. M. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proc. Natl. Acad. Sci. U. S. A., 101(21), 8174–8179. https://doi.org/10.1073/pnas.0402680101
Götz, M., & Huttner, W. B. (2005). The cell biology of neurogenesis. Nat. Rev. Mol. Cell Biol., 6(10), 777–788. https://doi.org/10.1038/nrm1739
Hagmann, P., Sporns, O., Madan, N., Cammoun, L., Pienaar, R., Wedeen, V. J., … Grant, P. E. (2010). White matter maturation reshapes structural connectivity in the late developing human brain. Proceedings of the National Academy of Sciences, 107(44), 19067–19072. https://doi.org/10.1073/pnas.1009073107
Herculano-Houzel, S. (2012). The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated cost. Proceedings of the National Academy of Sciences of the United States of America, 109 Suppl 1, 10661–10668. https://doi.org/10.1073/pnas.1201895109
Herculano-Houzel, S. (2016). The human advantage: A new understanding of how our brain became remarkable. MIT Press. Retrieved from https://market.android.com/details?id=book-DMqpCwAAQBAJ
Herculano-Houzel, S. (2017). Numbers of neurons as biological correlates of cognitive capability. Current Opinion in Behavioral Sciences, 16(Supplement C), 1–7. https://doi.org/10.1016/j.cobeha.2017.02.004
Hofman, M. A. (2014). Evolution of the human brain: When bigger is better. Frontiers in Neuroanatomy, 8. https://doi.org/10.3389/fnana.2014.00015
Irimia, A., & Van Horn, J. (2014). Systematic network lesioning reveals the core white matter scaffold of the human brain. Frontiers in Human Neuroscience, 8, 51. https://doi.org/10.3389/fnhum.2014.00051
Johnson, M. H. (2001). Functional brain development in humans. Nat. Rev. Neurosci., 2(7), 475–483. https://doi.org/10.1038/35081509
Kang, H. J., Kawasawa, Y. I., Cheng, F., Zhu, Y., Xu, X., Li, M., … Šestan, N. (2011). Spatio-temporal transcriptome of the human brain. Nature, 478(7370), 483–489. https://doi.org/10.1038/nature10523
Knickmeyer, R. C., Gouttard, S., Kang, C., Evans, D., Wilber, K., Smith, J. K., … Gilmore, J. H. (2008). A structural MRI study of human brain development from birth to 2 years. J. Neurosci., 28(47), 12176–12182. https://doi.org/10.1523/JNEUROSCI.3479-08.2008
Konner, M. (2011). The Evolution of Childhood. Belknap Press of Harvard University Press. Retrieved from http://www.hup.harvard.edu/catalog.php?isbn=9780674062016
Kuzawa, C. W., Chugani, H. T., Grossman, L. I., Lipovich, L., Muzik, O., Hof, P. R., … Lange, N. (2014). Metabolic costs and evolutionary implications of human brain development. Proc. Natl. Acad. Sci. U. S. A., 111(36), 13010–13015. https://doi.org/10.1073/pnas.1323099111
Miller, J. D., Scott, E. C., & Okamoto, S. (2006). Public acceptance of evolution. SCIENCE-NEW YORK THEN WASHINGTON-, 313(5788), 765. https://doi.org/10.1126/science.1126746
Northcutt, R. G. (2002). Understanding vertebrate brain evolution. Integr. Comp. Biol., 42(4), 743–756. https://doi.org/10.1093/icb/42.4.743
Petrican, R., Taylor, M. J., & Grady, C. L. (2017). Trajectories of brain system maturation from childhood to older adulthood: Implications for lifespan cognitive functioning. Neuroimage. https://doi.org/10.1016/j.neuroimage.2017.09.025
Rakic, P. (2009). Evolution of the neocortex: A perspective from developmental biology. Nature Reviews Neuroscience, 10(10), 724–735.
Shaw, P., Kabani, N. J., Lerch, J. P., Eckstrand, K., Lenroot, R., Gogtay, N., … Others. (2008). Neurodevelopmental trajectories of the human cerebral cortex. Journal of Neuroscience, 28(14), 3586–3594. https://doi.org/10.1523/JNEUROSCI.5309-07.2008
Wrangham, R. (2009). Catching fire: How cooking made us human. Basic Books. Retrieved from https://market.android.com/details?id=book-ebEOupKz-rMC