2020-03-24 10:14:40
https://github.com/topics/psychology-experiments?l=javascript
""" Demo: show a very basic program: hello world """ from __future__ import absolute_import, division, print_function # Import key parts of the PsychoPy library: from psychopy import visual, core # Create a visual window: win = visual.Window() # Create (but not yet display) some text: msg1 = visual.TextStim(win, text=u"Hello world!") # default position = centered msg2 = visual.TextStim(win, text=u"\u00A1Hola mundo!", pos=(0, -0.3)) # Draw the text to the hidden visual buffer: msg1.draw() msg2.draw() # Show the hidden buffer--everything that has been drawn since the last win.flip(): win.flip() # Wait 3 seconds so people can see the message, then exit gracefully: core.wait(3) win.close() core.quit() # The contents of this file are in the public domain.
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
This demo shows you different image presentation using visual.ImageStim and
visual.GratinGstim. It introduces some of the many attributes of these stimulus
types.
"""
from __future__ import division
# Import the modules that we need in this script
from psychopy import core, visual, event
# Create a window to draw in
win = visual.Window(size=(600, 600), color='black')
# An image using ImageStim.
image = visual.ImageStim(win, image='face.jpg')
# We can also use the image as a mask (mask="face.jpg") for other stimuli!
grating = visual.GratingStim(win,
pos=(-0.5, 0),
tex='sin',
mask='face.jpg',
color='green')
grating.size = (0.5, 0.5) # attributes can be changed after initialization
grating.sf = 1.0
# Initiate clock to keep track of time
clock = core.Clock()
while clock.getTime() < 12 and not event.getKeys():
# Set dynamic attributes. There's a lot of different possibilities.
# so look at the documentation and try playing around here.
grating.phase += 0.01 # Advance phase by 1/100th of a cycle
grating.pos += (0.001, 0) # Advance on x but not y
image.ori *= 1.01 # Accelerating orientation (1% on every frame)
image.size -= 0.001 # Decrease size uniformly on x and y
if image.opacity >= 0: # attributes can be referenced
image.opacity -= 0.001 # Decrease opacity
# Show the result of all the above
image.draw()
grating.draw()
win.flip()
win.close()
core.quit()
# The contents of this file are in the public domain.
<!doctype html>
<html>
<head>
<title>My page</title>
</head>
<body>
<h1>This is a top-level header.</h1>
<h2>This is a second level header.</h2>
<p>This is a paragraph.</p>
</body>
</html>
<html></html>, <head></head>, <body></body><a></a>), imgs (<img></img>), video (<video></video>), etc.<img src="https://upload.wikimedia.org/wikipedia/commons/thumb/6/61/HTML5_logo_and_wordmark.svg/200px-HTML5_logo_and_wordmark.svg.png" width = 200px></img>![]()
<!DOCTYPE html>
<html>
<head>
<title>My experiment</title>
<script src="jspsych-6.1.0/jspsych.js"></script>
<script src="jspsych-6.1.0/plugins/jspsych-html-keyboard-response.js"></script>
<link href="jspsych-6.1.0/css/jspsych.css" rel="stylesheet" type="text/css"></link>
</head>
<body></body>
<script>
var hello_trial = {
type: 'html-keyboard-response',
stimulus: 'Hello world!'
}
jsPsych.init({
timeline: [hello_trial]
})
</script>
</html>
<!--- From local directories ---> <script src="jspsych-6.1.0/jspsych.js"></script>
<link href="jspsych-6.1.0/css/jspsych.css" rel="stylesheet" type="text/css"></link>
<script>
var hello_trial = {
type: 'html-keyboard-response',
stimulus: 'Hello world!'
}
jsPsych.init({
timeline: [hello_trial]
})
</script>
Here’s what the data look like in JavaScript Object Notation (JSON)
{
"rt": 1219,
"stimulus": "img/orange.png",
"key_press": 70,
"response": "no-go",
"trial_type": "single-stim",
"trial_index": 2,
"time_elapsed": 13924,
"internal_node_id": "0.0-2.0-0.0",
"correct": false
},
{
"rt": -1,
"stimulus": "img/orange.png",
"key_press": -1,
"response": "no-go",
"trial_type": "single-stim",
"trial_index": 3,
"time_elapsed": 16305,
"internal_node_id": "0.0-2.0-1.0",
"correct": true
},
This talk was produced on 2020-03-24 in RStudio using R Markdown. The code and materials used to generate the slides may be found at https://github.com/psu-psychology/psy-525-reproducible-research-2020. Information about the R Session that produced the code is as follows:
## R version 3.6.2 (2019-12-12) ## Platform: x86_64-apple-darwin15.6.0 (64-bit) ## Running under: macOS Mojave 10.14.6 ## ## Matrix products: default ## BLAS: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRblas.0.dylib ## LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib ## ## locale: ## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8 ## ## attached base packages: ## [1] stats graphics grDevices utils datasets methods base ## ## loaded via a namespace (and not attached): ## [1] compiler_3.6.2 magrittr_1.5 tools_3.6.2 htmltools_0.4.0 ## [5] yaml_2.2.1 Rcpp_1.0.3 stringi_1.4.6 rmarkdown_2.1 ## [9] knitr_1.28 stringr_1.4.0 xfun_0.12 digest_0.6.25 ## [13] rlang_0.4.5 evaluate_0.14
Bridges, D., Pitiot, A., MacAskill, M. R., & Peirce, J. W. (2020, January). The timing mega-study: Comparing a range of experiment generators, both lab-based and online. PsyArXiv. https://doi.org/10.31234/osf.io/d6nu5
Gilmore, R. O., & Adolph, K. E. (2017). Video can make science more open, transparent, robust, and reproducible. Retrieved from http://osf.io/3kvp7
Kominsky, J. F. (2019). PyHab: Open-source real time infant gaze coding and stimulus presentation software. Infant Behavior & Development, 54, 114–119. https://doi.org/10.1016/j.infbeh.2018.11.006
MacWhinney, B., St James, J., Schunn, C., Li, P., & Schneider, W. (2001). STEP–a system for teaching experimental psychology using E-Prime. Behavior Research Methods, Instruments, & Computers: A Journal of the Psychonomic Society, Inc, 33(2), 287–296. https://doi.org/10.3758/bf03195379
Tran, M., Cabral, L., Patel, R., & Cusack, R. (2017). Online recruitment and testing of infants with mechanical turk. Journal of Experimental Child Psychology, 156, 168–178. https://doi.org/10.1016/j.jecp.2016.12.003
Vasilevsky, N. A., Brush, M. H., Paddock, H., Ponting, L., Tripathy, S. J., Larocca, G. M., & Haendel, M. A. (2013). On the reproducibility of science: Unique identification of research resources in the biomedical literature. PeerJ, 1, e148. https://doi.org/10.7717/peerj.148