2018-01-29 The retinal image PSY 525.001 · Vision Science · 2018 Spring

Rick Gilmore

2018-01-29 08:08:03

Today's topics

Today's topics

The retinal image

Today's topics

The retinal image

Discuss Fourier analysis, esp. Campbell & Robson 1968.

The retinal image

Human retina

http://webvision.med.utah.edu/

Fig. 2. Simple diagram of the organization of the retina.

http://webvision.med.utah.edu/

Ganglion cell response properties differ across cells

Individual response function of stimulus location, size

On- and off-center cells

Receptive fields have *center-surround* structure, due to *lateral inhibition*

By original uploaded to en by <u>user:delldot</u>, modified by <u>Xoneca</u> - Own work, Public Domain, <u>Link</u>

Fig. 12. Diagram of the organization of center-surround responses using horizontal cell circuitry to provide the antagonistic surround.

photoreceptors -> horizontal cells; photoreceptors + horizontal cells -> bipolar cells; bipolar cells -> amacrine + ganglion cells; bipolar + amacrine -> ganglion cells

Retina -> Lateral Geniculate Nucleus (LGN) of thalamus

Lateral Geniculate Nucleus (LGN)

Parallel pathways

Parvocellular (small cell) and magnocellular (large cell) layers

Magno vs. parvo LGN cells

Characteristic	Parvo	Magno
Color sensitivity	High	Low
Contrast sensitivity	Low	High
Spatial resolution	High	Low
Temporal resolution	Slow	Fast
Receptive field size	Small	Large

Palmer Table 4.1.1

Visual cortex

Striate cortex (stria of Gennari), V1, (Brodmann) area 17

Center-surround cells rare & rarity surprising

Simple cells, complex cells, & hypercomplex cells were elongated

(a)

(b)

(c)

Simple cells

Σ

V1 physiology: orientation selectivity

Hubel & Wiesel, 1968

Orientation (angular) selectivity

Complex cells

Nonlinear, motion sensitive, position invariance, spatially extended

Hypercomplex (end-stopped) cells

Wednesday, March 20, 2013

Cortical magnification

http://cns.bu.edu/~arash/animation.gif

Stimuli: a) Rotating sectors b) Ring contraction and expansion

Maps of angle(polarity) and eccentricity

Retinotopic visual areas

Retinotopy

Expanding ring/annulus

Rotating wedge

Zhuang, J., Ng, L., Williams, D., Valley, M., Li, Y., Garrett, M., & Waters, J. (2017). An extended retinotopic map of mouse cortex. eLife, 6. Retrieved from http://dx.doi.org/10.7554/eLife.18372

© 2001 Sinauer Associates, Inc.

Ocular dominance

Cortical hypercolumn

Aspects of the retinal-> V1 image

Topographic, but non-uniform

Functionally segregated (on/off center, wavelength, eye of origin)

Spatial frequency analysis

But first a bit about images as arrays of numbers

```
pix_per_img <- 100
x <- (1:pix_per_img)/pix_per_img # Make x on (0,1]
cyc_per_img <- 2 # spatial frequency f
phase <- 0
one_row <- sin(2*pi*cyc_per_img*x + phase)
plot(one_row)</pre>
```


```
vg_100 <- vertical_grating(cyc_per_img = 5)
plot(vg_100, rescale = FALSE)</pre>
```



```
vg_50 <- vg_100*0.5
plot(vg_50, rescale = FALSE)</pre>
```



```
vg_25 <- vg_100*.25
plot(vg_25, rescale = FALSE)</pre>
```


Under the hood

- Value at each x, y pixel is a number [0, 1] (for grayscale)
- plot scales that to [0,255] (dark to light)
- [0,255] has 256 levels, $2^8 = 256$, so this is '8-bit grayscale'
- 8-bit color has 3 numbers at each pixel, (r, g, b), one each for the red, green, and blue values.

Synthesizing images from sums of gratings

Every periodic pattern consists of an infinite sum of gratings of different spatial frequency, amplitude, phase, and orientation

plot(grating(cyc_per_img = 10))

plot(grating(cyc_per_img = 10, vertical=FALSE))


```
g_vert <- grating(cyc_per_img = 10, vertical = TRUE)
g_horiz <- grating(cyc_per_img = 10, vertical = FALSE)
g_sum <- g_vert + g_horiz
plot(g_sum)</pre>
```


Synthesizing a square wave

```
f <- 2 # Cycles per image
f1 <- grating(cyc_per_img = f)
f3 <- grating(cyc_per_img = 3*f)*(1/3)
f5 <- grating(cyc_per_img = 5*f)*(1/5)
f7 <- grating(cyc_per_img = 7*f)*(1/7)
f9 <- grating(cyc_per_img = 9*f)*(1/9)</pre>
```

plot(f1)

plot(f1+f3)

plot(f1+f3+f5+f7)

plot(f1+f3+f5+f7+f9)

Why this works

plot(f1[,1,1,1], ylim = c(0,1))

plot(f1[,1,1,1]+f3[,1,1,1])

That's (Fourier) synthesis

component_1 + component_2 +...+ component_n = image

Fourier *analysis* goes in reverse

image = component_1 + component_2 +...+ component_n

By Lucas V. Barbosa - Own work, Public Domain, Link

Why is Fourier analysis useful and important for vision science?

Why is it useful and important for other areas of psychological or neural science?

Break time

Discussion of Campbell, F. W., & Robson, J. G. (1968).

Key terms & parameters

- Contrast sensitivity vs. contrast threshold
- Contrast sensitivity function
- Sine, square, rectangular, saw tooth gratings
- Fourier components
- Luminance (in cd/m^2)
- Spatial frequency (in *cyc/deg*) vs. spatial period (\$deg/cyc\$)
- Temporal frequency (in c/s)
- Duty cycle (0,1]
- Size of image (in deg)
- Viewing distance
- Fundamental frequency

Contrast sensitivity

- sensitivity = 1/threshold
- low threshold -> high sensitivity & vice versa

Spatial frequency

Rules of thumb (~ $1-2^{\circ}$), vertical fist (~ 5°), horizontal fist (10°)

Three vertical sine wave gratings at low, medium, and high spatial frequency

Fourier components

• Sine wave:

$$\frac{4m}{\pi}sin(\frac{2\pi x}{X})$$

where X is the period, $\frac{x}{cycle}$, or $\frac{1}{frequency}$ and m is the contrast, $\frac{L_{max}-L_{min}}{2\bar{L}}$

- There are many measures of contrast, see https://en.wikipedia.org/wiki/Contrast_(vision)
- Square wave:

$$\frac{4m}{\pi} [\frac{1}{1} sin(1\frac{2\pi x}{X}) + \frac{1}{3} sin(3\frac{2\pi x}{X}) + \frac{1}{5} sin(5\frac{2\pi x}{X}) + \dots]$$

Duty cycle

Questions

- What psychophysical method was used?
- How were thresholds estimated?
- Why might a larger aperture yield higher sensitivity (lower threshold)?
- What spatial frequency yields the highest sensitivity?

Evaluating Campbell & Robson (1968) claims

- 1. The contrast thresholds of a variety of grating patterns have been measured over a wide range of spatial frequencies.
- 2. Contrast thresholds for the detection of gratings whose luminance profiles are sine, square, rectangular or saw-tooth waves can be simply related using Fourier theory.
- 3. Over a wide range of spatial frequencies the contrast threshold of a grating is determined only by the amplitude of the fundamental Fourier component of its wave form.
- 4. Gratings of complex wave form cannot be distinguished from sinewave gratings until their contrast has been raised to a level at which the higher harmonic components reach their independent threshold.
- 5. These findings can be explained by the existence within the nervous system of linearly operating independent mechanisms selectively sensitive to limited ranges of spatial frequencies.

The bigger picture

- Is V1 detecting oriented lines or spatial frequency patterns?
- Gabor patches combine a grating and a Gaussian envelope

Gabor patches as models of V1 simple cells?

Real component

$$g(x,y;\lambda, heta,\psi,\sigma,\gamma)=exp(-rac{x'^2+\gamma^2y'^2}{2\sigma^2})cos(2\pirac{x'}{\lambda}+\psi)$$

Imaginary component

$$g(x,y;\lambda, heta,\psi,\sigma,\gamma)=exp(-rac{x'^2+\gamma^2y'^2}{2\sigma^2})sin(2\pirac{x'}{\lambda}+\psi)$$

with
$$x' = xcos(\theta) + ysin(\theta)$$
 and $y' = -xsin(\theta) + ycos(\theta)$

Figure 15. Visual acuity in Snellen notation and its conversion to spatial frequency.

Snellen Metric	Snellen Imperial	MAR	logMAR	Decimal	cyc/deg
6/60	20/200	10	1.0	0.10	3
6/48	20/160	8.0	0.9	0.13	
6/38	20/125	6.3	0.8	0.16	4.76
6/30	20/100	5.0	0.7	0.20	
6/24	20/80	4.0	0.6	0.25	
6/19	20/60	3.2	0.5	0.32	9.375
6/15	20/50	2.5	0.4	0.40	
6/12	20/40	2.0	0.3	0.50	
6/9	20/30	1.6	0.2	0.63	18.75
6/7.5	20/25	1.25	0.1	0.80	
6/6	20/20	1.00	0.0	1.00	30
6/4.8	20/16	0.80	-0.1	1.25	
6/3.8	20/12.5	0.63	-0.2	1.58	
6/3.0	20/10	0.50	-0.3	2.00	60

http://webvision.med.utah.edu/book/part-viii-gabac-receptors/visual-acuity/

High vs. low spatial frequencies carry \neq information

Brain Waves: EEG Tracings

The Fourier Transform .com $\mathcal{F}\left\{g(t)\right\} = G(f) = \int_{-\infty}^{\infty} g(t)e^{-i2\pi ft}dt$ $\mathcal{F}^{-1}\left\{G(f)\right\} = g(t) = \int_{-\infty}^{\infty} G(f)e^{i2\pi ft}df$

Next time...

Depth perception

Slides created via the R package **xaringan**. Rendered HTML and supporting files are pushed to GitHub where GitHub's 'pages' feature is used to host and serve the course website.