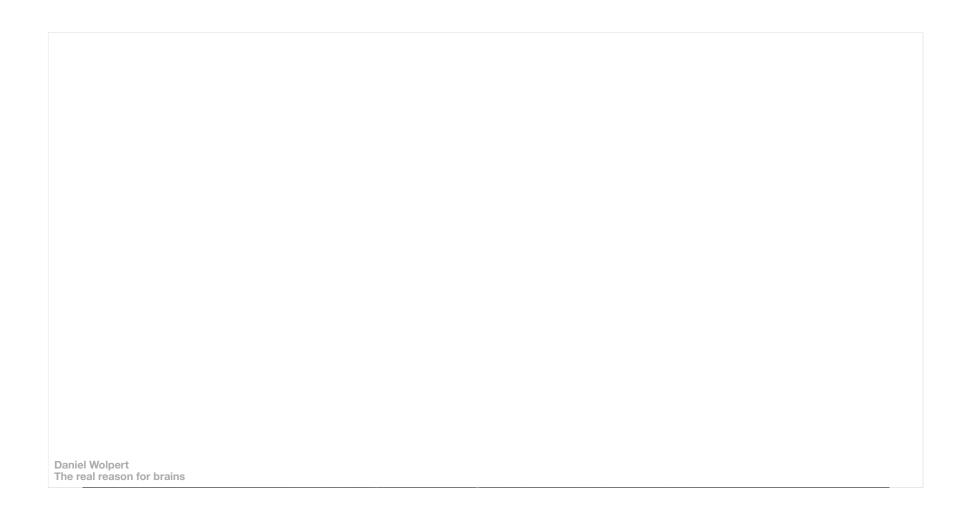
260-2017-11-06-action

Rick Gilmore 2017-11-05 08:21:08


Prelude (6:09)

Today's Topics

- Wrap up on pain
- · The neuroscience of action

The Real Reason for Brains

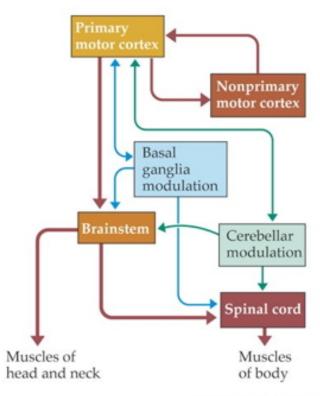
The neuroscience of action

- What types of actions are there?
- How are they produced?
 - By the muscles
 - By the nervous system

Nervous system "output" includes

- Movements
- Autonomic responses
- Endocrine responses

Types of actions



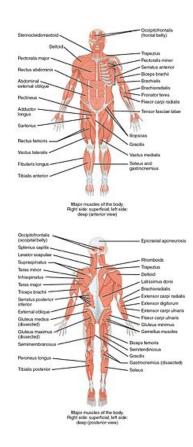
http://www.kidport.com/reflib/science/humanbody/muscul

Types of actions

- Reflexes
 - Simple, highly stereotyped, unlearned, rapid
- vs. planned or voluntary actions
 - Complex, flexible, acquired, slower
- Discrete (reaching) vs. rhythmic (walking)
- Ballistic (no feedback) vs. controlled (feedback)

Multiple, parallel controllers

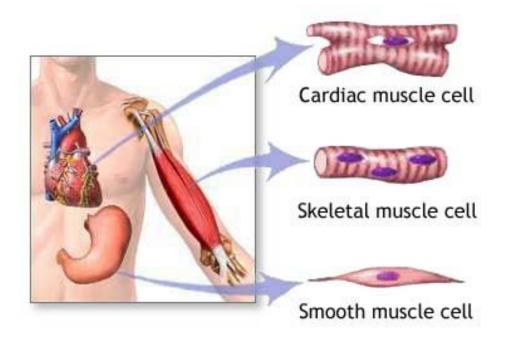
BIOLOGICAL PSYCHOLOGY, Faurth Edition, Figure 11.4 © 2004 Strauer Associates, Inc.


Key "nodes" in network

- Primary motor cortex (M1)
- Non-primary motor cortex
- Basal ganglia
- · Brain stem
- · Cerebellum
- Spinal cord

Muscle classes

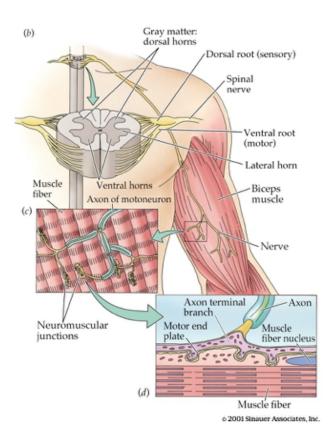
- Axial
 - Trunk, neck, hips
- Proximal
 - Shoulder/elbow, pelvis/knee
- Distal
 - Hands/fingers, feet/toes


Muscles

Muscle types

- Smooth
 - Arteries, hair follicles, uterus, intestines
 - Regulated by ANS (involuntary)
- Striated (striped)
 - Skeletal
 - Voluntary control, mostly connected to tendons and bones
- Cardiac

Muscle types

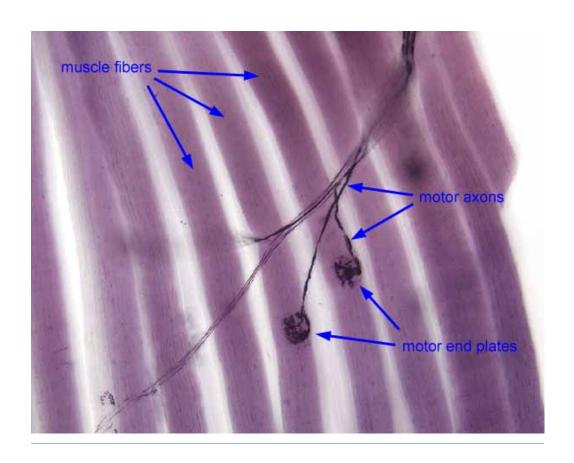

@ ADAM, Inc.

http://graphics8.nytimes.com/images/2007/08/01/health/a

How skeletal muscles contract

- Motor neuron soma located in ventral horn of spinal cord
- 'motor unit' = one motor neuron + all muscle fibers it connects with
- Motor neurons create specialized synapse = neuromuscular junction
 - Releases ACh

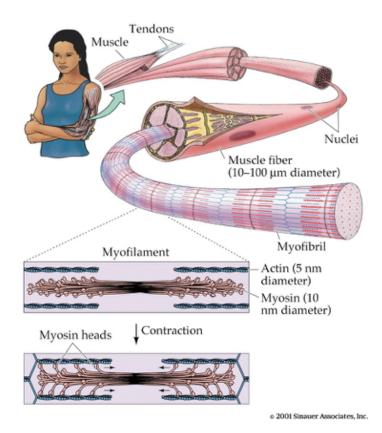
From spinal cord to muscle


How skeletal muscles contract

- Nicotinic ACh receptor (nAChR) binds ACh
 - *Nicotine* also binds to this receptor
 - nAChR's found in muscle (also in ANS and CNS)
- Rate of motor neuron firing ~ force produced ('rate coding')

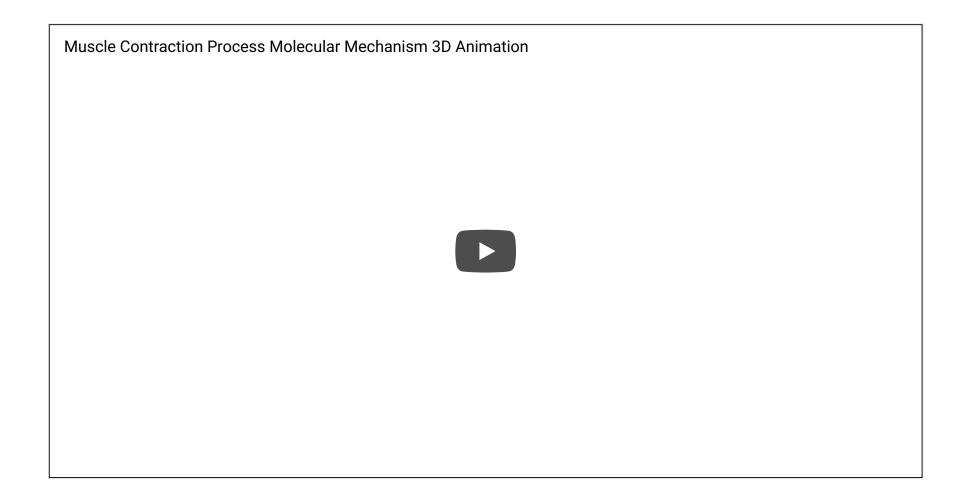
nAChR activation produces excitatory endplate potential

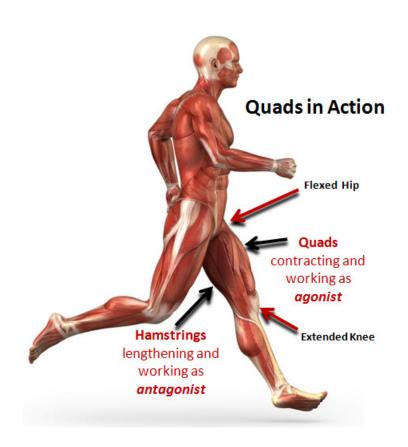
- Na+ influx/K+ efflux
- Muscle fibers depolarize
- Depolarization spreads along fibers like an action potential
- Intramuscular stores release Ca++


Motor endplate

How skeletal muscles contract

- Myofibrils (w/in sarcomere)
 - Actin & mysosin proteins
 - "Molecular gears"
- Bind, move, unbind in presence of Ca++, ATP


Anatomy of muscle fibers


Anatomy of motor endplate

Muscle contraction

Agonist/antagonist muscle pairs

http://2.bp.blogspot.com/-TpOC4my_NBc/T0J-MhEv29I/AAAAAAAAAF88/dYLv7QzFwmg/s1600/Hamstring-Quad4.jpg

Meat preference?

Muscle fiber types

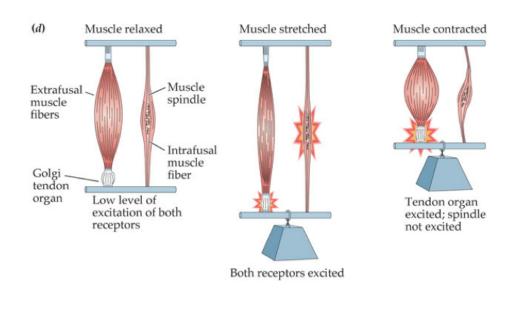

- Fast twitch/fatiguing
 - Type II
 - White meat
- Slow twitch/fatiguing
 - Type I
 - Red meat

Muscles are sensory organs, too!

Can Stock Photo

Two muscle fiber types

e 2001 Sinaver Associates, Inc.

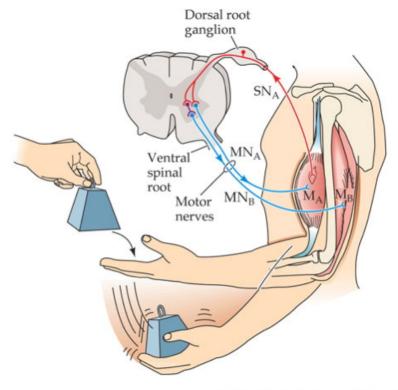

Two muscle fiber types

- Intrafusal fibers
 - Sense length/tension
 - Contain muscle spindles linked to la afferents
 - ennervated by gamma (γ) motor neurons
- Extrafusal fibers
 - Generate force
 - ennervated by alpha (α) motor neurons

Monosynaptic stretch (myotatic) reflex

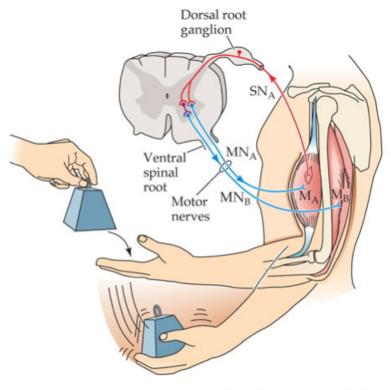
- Muscle stretched (length increases)
- Muscle spindle in intrafusal fiber activates
- Ia afferent sends signal to spinal cord
 - Activates alpha (α) motor neuron
- Muscle contracts, shortens length

Monosynaptic stetch (myotatic) reflex



Gamma (γ) motor neuron fires to take up intrafusal fiber slack

BIOLOGICAL PSYCHOLOGY, Fourth Edition, Figure 11.9 (Part 3) © 2004 Sinsuer Associates, Inc.



Monosynaptic stretch (myotatic) reflex

BIOLOGICAL PSYCHOLOGY, Fourth Edition, Figure 11.10 (Part 1) © 2004 Sinauer Associates, Inc.

Why doesn't antagonist muscle respond?

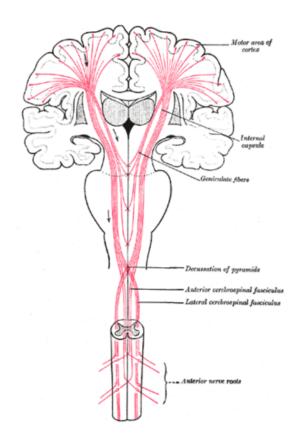
BIOLOGICAL PSYCHOLOGY, Fourth Edition, Figure 11.10 (Part 1) © 2004 Sinauer Associates, Inc.

Why doesn't antagonist muscle respond?

- Polysynaptic inhibition of antagonist muscle
- Prevents/dampens tremor

Brain gets fast(est) sensory info from spindles

TABLE 8.2 Fibers That Link Receptors to the CNS

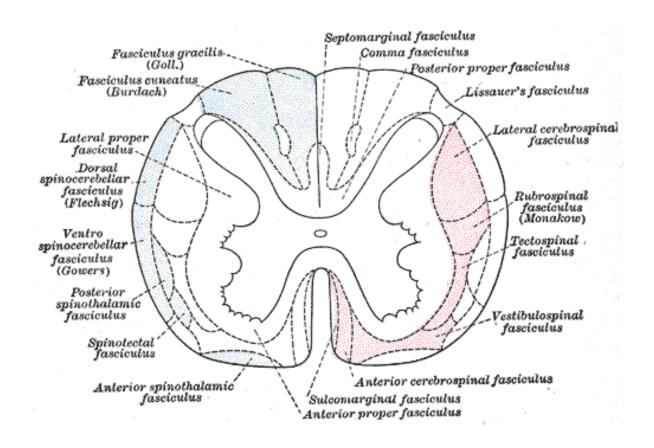

Sensory function(s)	Receptor type(s)	Axon type	Diameter (μm)	Conduction speed (m/s)
Proprioception (see Chapter 11)	Muscle spindle	Aα	13–20	80–120
Touch (see Figures 8.12 and 8.13)	Pacinian corpuscle, Ruffini's ending, Merkel's disc, Meissner's corpuscle	Αβ	6–12	35–75
Pain, temperature	Free nerve endings; VRL1	Aδ	1–5	5–30
Temperature, pain, itch	Free nerve endings; VR1, CMR1	С	0.02-1.5	0.5-2

BIOLOGICAL PSYCHOLOGY, Fourth Edition, Table 8.2 © Sinauer Associates, Inc.

How the brain controls the muscles

- Pyramidal tracts
 - Pyramidal cells (Cerebral Cortex Layer 5) in primary motor cortex (M1)
 - Corticobulbar (cortex -> brainstem) tract
 - Corticospinal (cortex -> spinal cord) tract
- Crossover (decussate) in medulla
 - L side of brain ennervates R side of body

Corticospinal tract



https://commons.wikimedia.org/wiki/File:Gray764.png#/me

How the brain controls the muscles

- Extrapyramidal system
 - Tectospinal tract
 - Vestibulospinal tract
 - Reticulospinal tract
- Involuntary movements
 - Posture, balance, arousal

Extrapyramidal system

https://upload.wikimedia.org/wikipedia/commons/b/be/Gra

Disorders

- Parkinson's
- Huntington's

The Faces of Parkinson's

Parkinson's

- Slow, absent movement, resting tremor
- Cognitive deficits, depression
- DA Neurons in substantia nigra degenerate
- Treatments
 - DA agonists
 - DA agonists linked to impulse control disorders in ~1/7 patients (Ramirez-Zamora et al. 2016)
 - Levodopa (L-Dopa), DA precursor

Huntington's

http://cp91279.biography.com/1000509261001/100050926 guthrie-centennial-1.jpg

Huntington's

- Formerly Huntington's Chorea
 - "Chorea" from Greek for "dance"
 - "Dance-like" pattern of involuntary movements
- Cognitive decline
- Genetic + environmental influences
- Disturbance in striatum
- No effective treatment

Huntington's

Final thoughts

- Control of movement determined by multiple sources
- Cerebral cortex + basal ganglia + cerebellum + spinal circuits

Next time...

• Review for Exam 3

References

Ramirez-Zamora, Adolfo, Lucy Gee, James Boyd, and José Biller. 2016. "Treatment of Impulse Control Disorders in Parkinson's Disease: Practical Considerations and Future Directions." *Expert Review of Neurotherapeutics* 16 (4): 389–99. doi:10.1586/14737175.2016.1158103.