PSYCH 260/BBH 203

Cellular neuroscience II

Rick O. Gilmore 2022-02-03 07:31:17

Prelude (4:20)

Prelude (2:33)

Announcements

- Exam 1 Thursday, 2/10
 - 40 questions
 - No in-person/in-class meeting
 - On Canvas, live at 3:05 PM; open until 10:00 PM

Today's Topics

- Electrical communication in neurons
- The action potential

How do neurons communicate?

Types of neural electrical potentials

- Resting potential
 - Voltage across neuronal membrane when cell is 'at-rest' (not firing)
- Action potential
 - Voltage across neuronal membrane when cell is active or firing

Where does the resting potential come from?

- Ions (charged particles)
- Ion channels
- Separation between charges
- A balance of forces

We are the champlONs, my friend

- Potassium, K^+
- Sodium, Na⁺
- Chloride, Cl^-
- Organic anions, A^-

Party On

- Annie (A^-) was having a party.
 - Used to date Nate (Na^+), but now sees Karl (K^+)
- Hired bouncers called
 - "The Channels"
 - Let Karl and friends in or out, keep Nate out
- Annie's friends (A^-) and Karl's (K^+) mostly inside

- Nate and friends (Na^+) mostly outside
- Claudia (Cl^-) tagging along

Resting potential arises from

- A balance of forces
 - Force of diffusion
 - Electrostatic force
- Forces cause ion flows across *membrane*
 - Force of diffusion consistent (over time)
 - Electrostatic force changes
- Ion channels allow ion flow

Ion channels

- Openings in neural membrane
- Selective for specific ions
- Vary in permeability (how readily ions flow)
- Types
 - Passive/leak (always open)
 - Voltage-gated
 - Ligand-gated (chemically-gated)
 - Transporters/pumps

Ion channels

http://www.zoology.ubc.ca/~gardner/F21-08.GIF

Neuron at rest permeable to K^+

- *Permeable*: Permits flow across/through
- Passive K^+ channels open
- $[K^+]$ concentration inside >> outside
- K^+ flows out
 - Neuron constantly brings K^+ in

https://www.youtube.com/watch?v=I_N82ZvLT-Q

Force of diffusion

semipermeable membrane

https://upload.wikimedia.org/wikipedia/commons/thumb/7/72/Diffusion.en.svg/1000px-Diffusion.en.svg.png

Force of diffusion

https://upload.wikimedia.org/wikipedia/commons/1/12/Bubble_bath.jpg

Neuron at rest permeable to K^+

- Organic anions (A^-) too large to move outside of cell
- A^- and K^+ largely in balance == no net internal charge
- K^+ outflow creates *charge separation*: K^+ (outside) <-> A^- (inside)
- Charge separation creates a voltage
- Outside +/inside -
- Voltage build-up stops outflow of K^+

The resting potential

Balance of forces in the neuron at rest

- Force of diffusion
 - K^+ moves from high concentration (inside) to low (outside)

Balance of forces in the neuron at rest

- Electrostatic force
 - Voltage build-up stops K^+ outflow
 - Specific voltage that stops flow == equilibrium potential for K^+ +
 - *K*⁺ positive, so equilibrium potential negative (w/ respect to outside)
 - Equilibrium potential close to neuron's resting potential

Equilibrium potential and Nernst equation

$$V_{\rm K} = \frac{RT}{(+1)F} \ln \frac{[\rm K^+]_o}{[\rm K^+]_i}$$

Equilibrium potentials calculated under typical conditions

lon	[inside]	[outside]	Voltage
K^+	~150 mM	~4 mM	~ -90 mV
Na ⁺	~10 mM	~140 mM	~ +55-60 mV
Cl^{-}	~10 mM	~110 mM	- 65-80 mV

$$V_{\rm K} = \frac{RT}{(+1)F} \ln \frac{[\rm K^+]_o}{[\rm K^+]_i}$$

http://www.physiologyweb.com/lecture_notes/resting_men

Neuron resting potential $\neq K^+$ equilibrium potential

- Resting potential not just due to K^+
- Other ions flow
- Resting potential == net effects of *all* ion flows across membrane

Goldman-Hodgkin-Katz equation

$$V_{\rm m} = \frac{RT}{F} \ln \left(\frac{p_{\rm K} [{\rm K}^+]_{\rm o} + p_{\rm Na} [{\rm Na}^+]_{\rm o} + p_{\rm Cl} [{\rm Cl}^-]_{\rm i}}{p_{\rm K} [{\rm K}^+]_{\rm i} + p_{\rm Na} [{\rm Na}^+]_{\rm i} + p_{\rm Cl} [{\rm Cl}^-]_{\rm o}} \right)$$

http://www.physiologyweb.com/calculators/figs/ghk_equation.gif

Na^+ role

- · Na^+ concentrated **outside** neuron
- Membrane at rest not very permeable to Na^+
- Some, but not much Na^+ flows in
- Na^+ has equilibrium potential ~ + 60 mV
- Equilibrium potential is positive (with respect to outside)
- Would need positive interior to keep Na^+ from flowing in

Electrical circuit model

https://upload.wikimedia.org/wikipedia/commons/thumb/3/33/MembraneCircuit.jpg/500px-MembraneCircuit.jpg

Summary of forces in neuron at rest

lon	Concentration gradient	Electrostatic force	Permeability
K^+	Inside >> Outside	- (pulls K^+ in)	Higher
Na ⁺	Outside >> Inside	- (pulls Na^+ in)	Lower

What happens if something changes?

- Easier for Karl $[K^+]$ to exit?
- Easier for Nate [Na^+] to enter?
- Some action!

Action potential

Phases of the action potential

- Threshold of excitation
- Increase (rising phase/depolarization)
- Peak
 - at positive voltage
- Decline (falling phase/repolarization)
- Return to resting potential (refractory period)

Action potential break-down

Phase	Neuron State
Rise to threshold	+ input makes membrane potential more +
Rising phase	Voltage-gated Na^+ channels open, Na^+ flows in
Peak	Voltage-gated Na^+ channels close and deactivate; voltage-gated K^+ channels open
Falling phase	K^+ flows out
Refractory period	Na^+/K^+ pump restores [Na^+], [K^+]; voltage- gated K^+ channels close

What's a Na^+/K^+ pump?

- Enzyme Na^+/K^+ ATP-ase embedded in neuron membrane
- Pumps Na^+ and K^+ against concentration gradients
- Na^+ out; K^+ in
- Uses adensosine triphosphate (<u>ATP</u>) form of chemical energy

Example in another domain

© 2010 Encyclopædia Britannica, Inc.

http://media-2.web.britannica.com/eb-media/75/103875-004-5F8D1D0E.jpg

Refractory periods

- Absolute
 - Cannot generate action potential (AP) no matter the size of the stimulus
 - Voltage-gated Na^+ channels inactivated, reactivate in time.

Refractory periods

- Relative
 - Can generate AP with larg(er) stimulus
 - Some voltage-gated K^+ channels still open
- Refractory periods put 'spaces' between APs

Generating APs

- Axon hillock
 - Portion of soma adjacent to axon
 - Integrates/sums input to soma
- Axon initial segment
 - Umyelinated portion of axon adjacent to soma
 - Voltage-gated Na^+ and K^+ channels exposed
 - If sum of input to soma > threshold, voltagegated Na^+ channels open

Axon hillock, axon initial segment

Axon Hillock" by M.aljar3i - Own work. Licensed under CC BY-SA 3.0 via Commons

Nodes of Ranvier

- Regenerate action potential
- Na^+ and K^+ channels exposed to extracellular environment
- Between Nodes of Ranvier, ions can't move out, so move along
- Nodes of Ranvier -> Action potentials faster & reliable for a given diameter

Main points

- Resting potential maintained by balance of forces (diffusion, electrostatic)
- Action potential generated when balance is altered
 - $[Na^+]$ in: rising phase to + peak
 - $[K^+]$ out: falling phase

Next time

- More on the action potential
- Review for Exam 1

