PSYCH 260/BBH 203

Cellular neuroscience III

Rick O. Gilmore 2022-02-15 08:10:21

Today's Topics

- Warm-up **·**
- What good are brains? **·**
- Action potential propagation **·**
- Another take on the resting and action potentials **·**

Warm-up

Which force(s) act to move Na+ ions *inward* **in a neuron at resting potential?**

A. The force of diffusion B. The dark side of the force C. The electrostatic force D. Gravity E. Both A. and C.

Which force(s) act to move Na+ ions *inward* **in a neuron at resting potential?**

- A. The force of diffusion B. The dark side of the force C. The electrostatic force D. Gravity
- E. Both A. and C.

Atthe (positive voltage) *peak* **ofthe action potential, which force(s) act to move K+ ions** *outward***?**

A. The force of diffusion B. The dark side of the force C. The electrostatic force D. Gravity E. Both A. and C.

Atthe (positive voltage) *peak* **ofthe action potential, which force(s) act to move K+ ions** *outward***?**

A. The force of diffusion B. The dark side of the force C. The electrostatic force D. Gravity E. Both A. and C.

What good are brains?

Why brains?

- *[Escherichia Coli \(E. Coli\)](https://en.wikipedia.org/wiki/Escherichia_coli)* **·**
- *[Paramecium](https://en.wikipedia.org/wiki/Paramecium)* **·**
- *[Caenorhabditis Elegans \(C. Elegans\)](https://en.wikipedia.org/wiki/Caenorhabditis_elegans)* **·**

[Sterling & Laughlin, 2015](https://mitpress.mit.edu/neuraldesign%20)

[Escherichia](https://en.wikipedia.org/wiki/Escherichia_coli) Coli (E. Coli)

- Tiny, single-celled bacterium **·**
- Feeds on glucose **·**
- Chemosensory ("taste") receptors on surface membrane **·**
- Flagellum for movement **·**
- Food concentration regulates duration of "move" phase **·**
- ~4 ms for chemical signal to diffuse from **·**anterior/posterior

[Paramecium](https://en.wikipedia.org/wiki/Paramecium)

- 300K larger than E. Coli **·**
- Propulsion through coordinated beating of cilia **·**
- Diffusion from head to tail ~40 s! **·**
- Use *electrical* signaling instead **·**
	- $Na⁺$ channel opens (e.g., when stretched)
	- Voltage-gated Ca^{++} channels open, Ca^{++} enters, triggers cilia movement
	- Voltage propagates along cell membrane within ms

[Caenorhabditis](https://en.wikipedia.org/wiki/Caenorhabditis_elegans) Elegans (C. Elegans)

- ~10x larger than paramecium
- multi-cellular ($n = 959$ cells total)
- \cdot $n = 302$ are neurons & $n = 56$ are glia
- nervous system 37% of cells vs. ~0.5% in humans **·**
- Can swim, forage, mate **·**

Why brains?

- Bigger bodies (need to process specific info, move **·** through water, air, on land)
- For neurons (point to point communication) **·**
- Live longer **·**
- Do more, do it faster, over larger distances & longer time periods **·**

Why chemical & electrical communication?

- Chemical communication : short distances **·**
	- Cheap, energy-efficient, "compute with chemistry"
- Electrical communication : long distances **·**
	- **-** More "expensive"/less energy-efficient

How action potentials propagate

Axon is like an electrical cable

knitr::include graphics("http://pittmedneuro.com/img/Cable.jpg")

<http://pittmedneuro.com/synaptic.html>

AP propagation

- Propagation **·**
	- move down axon, away from soma, toward axon terminals.
- Unmyelinated axon **·**
	- **-** Each segment "excites" the next

AP propagation is like

AP propagation

- **·** Myelinated axon
	- AP "jumps" between *Nodes of Ranvier* via *saltatory* *conduction*
	- Nodes of Ranvier == unmyelinated sections of axon
	- $% \left\{ \left\{ \left[\left[2\right] \right] ,\left\{ \left[2\right] \right\} \right\} \right\}$ voltage-gated Na^{+} , K^{+} channels exposed
	- Current flows through myelinated segments **-**

Question

- **·** Why does AP flow in one direction, away from soma?
	- $\,$ Soma does not have (many) voltage-gated Na^{+} channels.
	- Soma is not myelinated.
	- Refractory periods mean polarization only in one direction.

Question

- **·** Why does AP flow in one direction, away from soma?
	- $\,$ Soma does not have (many) voltage-gated Na^{+} **channels.**
	- Soma is not myelinated.
	- **Refractory periods mean polarization only in one direction.**

Conduction velocities

WIKIPEDIA

Nerve conduction velocity

Nerve conduction velocity (**CV**) is an important aspect of [nerve conduction studies.](https://en.wikipedia.org/wiki/Nerve_conduction_study) It is the speed at which an [electrochemical](https://en.wikipedia.org/wiki/Electrochemical) impulse propagates down a [neural pathway](https://en.wikipedia.org/wiki/Neural_pathway). Conduction velocities are affected by a wide array of factors, which include; age, sex, and various medical conditions. Studies allow for better diagnoses of various [neuropathies](https://en.wikipedia.org/wiki/Peripheral_neuropathy), especially [demyelinating diseases](https://en.wikipedia.org/wiki/Demyelinating_disease) as these conditions result in reduced or non-existent conduction velocities.

Contents

Normal conduction velocities

Testing methods Nerve conduction studies Micromachined 3D electrode arrays

Causes of conduction velocity deviations

Anthropometric and other individualized factors Age Sex **Temperature** Height Hand factors

Saltatory [conduction](https://en.wikipedia.org/wiki/Saltatory_conduction)

Conduction velocities

- Axons carry information at different rates **·**
	- More myelin -> faster **-**
	- Larger diameter axon -> faster **-**
- PNS seems to prioritize **·**
	- **-** Somatosensory information & muscle control

Information processing

- AP amplitudes don't vary (much) **·**
	- All or none **-**
	- Na^{+}/K^{+} pumps working all the time
	- $[K^+]$ & $[Na^+]$ don't vary much, so
	- V_{K^+} & V_{Na^+} don't vary much $+$
- AP frequency and timing vary **·**
	- Rate vs. timing codes
	- Neurons use both **-**

Another take...

The Hodgkin-Huxley (HH) model

HH model: Membrane as simple circuit

- Membrane as capacitor (C): stores charge **·**
- Ion channels: resistors that can vary in conductance ($g=\frac{1}{R}$ R
- Ion flows create current (I)

• Ohms Law:
$$
V = \frac{I}{g}
$$
 or $Vg = I$

The K^+ story

- \cdot Na^{+}/K^{+} pump pulls K^{+} in
- \cdot $[K^+]_{in}$ (~150 mM) >> $[K^+]_{out}$ (~4 mM)
- \cdot Outward flow of K^+ through passive/leak channels via force of diffusion
- Outflow stops when *membrane potential*, $V_m =$ equilibrium potential for K^+

Equilibrium potential

- \cdot Voltage (V_K) that keeps system in equilibrium
	- $[K^+]_{in} \gg [K^+]_{out}$
- Nernst equation **·**

-
$$
V_K = \frac{RT}{(+1)F} ln(\frac{[K^+]_{out}}{[K^+]_{in}})
$$

- $-V_K = -90$ mV
- Negative inside/positive outside keeps $[K^+]$ concentration gradient

Equilibrium potential

- \cdot K^+ flows out through passive/leak channels ∪¦
- \cdot Most K^+ remains near membrane
- Separation from A^- creates charge $\frac{K+K+K+K+K+K+K}{A-A-A-A-A-}$ along capacitor-like membrane K+K+K+K+K+
A−A−A−A−A−
- \cdot $\left| {V_m } \right\rangle$ (membrane potential) –> ${V_K }$ +

[Equilibrium](http://www.physiologyweb.com/calculators/nernst_potential_calculator.html) potentials calculated under typical conditions

 $V_{\rm K} = \frac{RT}{(+1)F} \ln \frac{[{\rm K}^+]_{o}}{[{\rm K}^+]_{i}}$

The $Na⁺$ story

- \cdot Na^{+}/K^{+} pump pushes Na^{+} out
- \cdot $[Na^{+}]_{in}$ (~10 mM) << $[Na^{+}]_{out}$ (~140 mM)
- Equilibrium potential for Na^+ , V_{Na^+} = ~ +55 mV $^{+}$
	- Inside positive/outside negative to $[Na^{+}]$ concentration gradient
- If Na^{+} alone, $V_m \rightarrow V_{Na}$ (~ +55 mV)

Resting potential

- \cdot Sum of outward K^+ and inward Na^+
	- Membrane more permeable to K^+ than Na^+ , $p_{K+} > p_{Na}$ $+$
	- Outward flow of K^+ > inward flow of Na^+
	- Resting potential (~-70 mV) closer to V_{K^+} (-90 mV) than V_{Na^+} (+55 mV) $+$ $^{+}$

Resting potential

· Goldman-Hodgkin-Katz equation

$$
= V_m = \frac{RT}{F} ln(\frac{p_K[K^+]_{out} + p_{Na}[Na^+]_{out}}{p_K[K^+]_{in} + p_{Na}[Na^+]_{in}})
$$

"Driving force" and equilibrium potential

- "Driving Force" on a given ion depends on difference **·** between
	- Equilibrium potential for given ion **AND -**
	- Neuron's current membrane potential (V_m)
	- V_m reflects combined effects of all ions

"Driving force" and equilibrium potential

- **·** Anthropomorphic ('in human form') metaphor
	- K^+ "wants" to flow out (hyperpolarize neuron)
	- Na^{+} "wants" to flow in (depolarize neuron)
	- Strength of that "desire" depends on distance from the equilibrium potential for each ion
- Humans (often) think about causes and effects in **·** psychological terms
	- Ok to do so, as long as we recognize when it's just a metaphor

Action potentials and driving forces

$\mathsf{Voltage}\text{-}gated\,Na^+$ and K^+ channels

- Dynamic elements; change state over time **·**
	- Hodgkin-Huxley (HH) equations describe state changes
- Open and close with changes in voltage **·**
- Voltage-gated Na^+ also *inactivate*; *de-inactivate* as voltage changes

Neuron at rest

- \cdot Driving force on K^+ weakly out
	- **-** -70 mV (-90 mV) = +20 mV
- Driving force on Na^+ strongly in
	- **-** -70 mV (+55 mV) = -125 mV
- \cdot Na^{+}/K^{+} pump maintains concentrations

Action potential rising phase

- \cdot Voltage-gated Na^{+} channels open
- \cdot Membrane permeability to Na^{+} increases
	- Na^+ inflow through passive + voltage-gated channels
	- $\,$ continued K^+ outflow through passive channels

Peak

- \cdot Membrane permeability to Na^+ reverts to resting state
	- Voltage-gated Na^+ channels close $\&$ inactivate
	- Slow inflow due to small driving force (+30 mV **-**55mV = -25 mv)

Peak

- Membrane permeability to K^+ increases
	- Voltage-gated K^+ channels open
	- Fast outflow due to strong driving force (+30 mv **-** $(-90 \text{ mv}) = +120 \text{ mv}$

Falling phase

- \cdot K^+ outflow
	- $\,$ Through voltage-gated K^+ and passive K^+ channels
- $Na⁺$ inflow
	- **-** Through passive channels only

Absolute refractory phase (period)

- Cannot generate action potential (AP) no matter the **·** size of the stimulus
- Membrane potential more negative (~-90 mV) than at rest (~-70 mV) **·**
- \cdot Voltage-gated Na^{+} channels still inactivated
	- Driving force on Na^+ high (-90 mv 55 mV = -145 mV), but…

Absolute refractory phase (period)

- \cdot Voltage-gated K^+ channels closing
	- Driving force on K^+ tiny or absent
- \cdot Na^{+}/K^{+} pump restoring concentration balance

Relative **refractory phase (period)**

- Can generate AP with larg(er) stimulus **·**
- \cdot Some voltage-gated Na^{+} 'de-inactivate', can open if
	- Larger input **-**
	- Membrane potential is more negative than resting potential

Neuron at rest

- \cdot Voltage-gated Na^{+} closed, but ready to open
- \cdot Voltage-gated K^+ channels closed, but ready to open
- \cdot Membrane potential V_m at rest (~60-75 mV)
- \cdot Na^{+}/K^{+} pump still working...

Animation

[https://phet.colorado.edu/sims/html/neuron/latest/neuron](https://phet.colorado.edu/sims/html/neuron/latest/neuron_en.html)

Generating APs

- *Axon hillock* **·**
	- Portion of soma adjacent to axon **-**
	- Integrates/sums input to soma
- *Axon initial segment* **·**
	- Umyelinated portion of axon adjacent to soma **-**
	- $^\mathrm{voltage\text{-}gated} \, Na^+$ and K^+ channels exposed
	- If sum of input to soma > threshold, voltagegated Na^{+} channels open-

Axon hillock, axon initial segment

[Axon Hillock"](https://commons.wikimedia.org/wiki/File:Axon_Hillock.png#/media/File:Axon_Hillock.png) by [M.aljar3i](http://commons.wikimedia.org/w/index.php?title=User:M.aljar3i&action=edit&redlink=1) - Own work. Licensed under [CC BY-SA 3.0](http://creativecommons.org/licenses/by-sa/3.0) via [Commons](https://commons.wikimedia.org/wiki/)

Next time...

· Exam 1