260-2017-02-03

Rick Gilmore 2017-02-12 11:54:17

Measuring potentials in actual neurons

Today's Topics

- The neuron at rest
- The neuron in action

Resting potential

Resting potential arises from

- A balance of forces
 - Force of diffusion
 - Electrostatic force
- Forces cause ion flows across membrane
- Ion channels allow ion flow

Ion channels

- Openings in neural membrane
- Selective
- Vary in permeability
- Types
 - Passive/leak
 - Voltage-gated
 - Ligand-gated (chemically-gated)
 - Transporters/pumps

Ion channels

Neuron at rest permeable to K+

- Passive K+ channels open
- [K+] concentration inside >> outside
- K+ flows out

Force of diffusion

Force of diffusion

Neuron at rest permeable to K+

- Organic anions (A-) to large to move outside of cell
- A- and K+ largely in balance == no net internal charge
- K+ outflow creates charge separation: K+ <-> A-
- Charge separation creates a voltage
- Outside +/inside -
- Voltage build-up stops outflow of K+

The resting potential

Balance of forces in the neuron at rest

Force of diffusion

 K+ moves from high concentration (inside) to low (outside)

Balance of forces in the neuron at rest

- Electrostatic force
 - Voltage build-up stops K+ outflow
 - Specific voltage called *equilibrium potential* for K+
 - K+ positive, so equilibrium potential negative (w/ respect to outside)
 - Equilibrium potential close to neuron resting potential

Equilibrium potential and Nernst equation

Building on intuition

Equilibrium potentials calculated under typical conditions

Ion	[inside]	[outside]	Voltage
K+	${\sim}150~{\rm mM}$	$\sim 4 \text{ mM}$	\sim -90 mV
Na+	${\sim}10~{\rm mM}$	${\sim}140~{\rm mM}$	$\sim +55\text{-}60~\mathrm{mV}$
Cl-	${\sim}10~{\rm mM}$	${\sim}110~{\rm mM}$	- 65-80 mV

Resting potential K+ equilibrium potential

- Resting potential not just due to K+
- Other ions flow
- Resting potential == net effects of all ion flows across membrane

Goldman-Hodgkin-Katz equation

Na+ role

- Na+ concentrated **outside** neuron
- Membrane at rest not very permeable to Na+
- Some, but not much Na+ flows in
- Na+ has equilibrium potential ~ + 60 mV
- Equilibrium potential is positive (with respect to outside)
- Would need positive interior to keep Na+ from flowing in

Electrical circuit model

Summary of forces

Ion	Concentration gradient	Electrostatic force	Permeability
$\overline{\mathrm{K}+}$	Inside >> Outside	- (pulls K+ in)	Higher
Na+	Outside >> Inside	- (pulls Na+ in)	Lower

Party On

- Annie (A-) was having a party.
 - Used to date Nate (Na+), but now sees Karl (K+)
- Hired bouncers called
 - "The Channels"
 - Let Karl and friends in or out, keep Nate out
- Annie's friends (A-) and Karl's (K+) mostly inside
- Nate and friends (Na+) mostly outside
- Claudia (Cl-) tagging along

What happens if something changes?

- Easier for Karl [K+] to exit?
- Easier for Nate [Na+] to enter?
- Some action!

Action potential

Action potential

- Threshold of excitation
- Increase (rising phase/depolarization)
- Peak
 - at positive voltage
- Decline (falling phase/repolarization)
- Return to resting potential (refractory period)

Action potential break-down

Phase	Neuron State	
Rise to threshold	+ input makes membrane potential more +	
Rising phase	Voltage-gated Na+ channels open, Na+ enters	
Peak	Voltage-gated Na+ channels close and deactivate; voltage-gated K+ channels open	
Falling phase Refractory period	K+ exits Na+/K+ pump restores [Na+], [K+]; voltage-gated K+ channels close	

What's a Na+/K+ pump?

- Enzyme (Na+/K+ATP-ase) embedded in neuron membrane
- Pumps Na+ and K+ *against* concentration gradients
- Na+ out; K+ in
- Uses ATP or chemical energy

Example in another domain

Refractory periods

- Absolute
 - Cannot generate action potential (AP) no matter the size of the stimulus
 - Voltage-gated Na+ channels inactivated, reactivate in time.
- Relative
 - Can generate AP with larg(er) stimulus
 - Some voltage-gated K+ channels still open
- Refractory periods put 'spaces' between APs

Generating APs

- Axon hillock
 - Portion of soma adjacent to axon
 - Integrates/sums input to soma
- Axon initial segment
 - Umyelinated portion of axon adjacent to soma
 - Voltage-gated Na+ and K+ channels exposed
 - If sum of input to soma > threshold, voltage-gated Na+ channels open

Axon hillock, axon initial segment

Axon Hillock" by M.aljar3i - Own work. Licensed under CC BY-SA 3.0 via Commons

Next time

- How action potentials propagate
- Review for Exam 1