In this tutorial we walk through the very basics of conducting exploratory factor analysis (EFA) in R. This is not a comprehensive coverage, just something to get started.
In this session we cover …
A. Introduction to the Factor Analyis Model
B. Example 1: Basic EFA orientation & interpretation
C. Example 2: Choosing the number of factors, comparing solutions, etc…
library(psych)
library(ggplot2)
library(corrplot) #plotting correlation matrices
library(GPArotation) #methods for factor rotation
library(nFactors) #methods for determining the number of factors
##A. Introduction to the Factor Analyis Model
The basic factor analysis model is written as
\[y_{pi} = \lambda_{pq} f_{qi} + u_{pi}\] where \(y_{pi}\) is individual i’s score on the pth observed variable, \(f_{qi}\) is individual i’s score on the qth latent common factor, \(u_{pi}\) is individual i’s score on the pth latent unique factor, and \(\lambda_{pq}\) is the factor loading that indicates the relation between the pth observed variable and the qth latent common factor.
Typically, we have multiple observed variables and one or more common factors. FOr instance in the 6 variable, 2 factor case we would have …
\[y_{1i} = \lambda_{11} f_{1i} + \lambda_{12} f_{2i} + u_{1i}\] \[y_{2i} = \lambda_{21} f_{1i} + \lambda_{22} f_{2i} + u_{2i}\] \[y_{3i} = \lambda_{31} f_{1i} + \lambda_{32} f_{2i} + u_{3i}\] \[y_{4i} = \lambda_{41} f_{1i} + \lambda_{42} f_{2i} + u_{4i}\] \[y_{5i} = \lambda_{51} f_{1i} + \lambda_{52} f_{2i} + u_{5i}\] \[y_{6i} = \lambda_{61} f_{1i} + \lambda_{62} f_{2i} + u_{6i}\] which can be written in a compact matrix form as
\[ \boldsymbol{Y_{i}} = \boldsymbol{\Lambda}\boldsymbol{F_{i}} + \boldsymbol{U_{i}} \] where \(\boldsymbol{Y_{i}}\) is a \(p\) x 1 vector of observed variable scores, \(\boldsymbol{\Lambda}\) is a p x q matrix of factor loadings, \(\boldsymbol{F_{i}}\) is a \(q\) x 1 vector of common factor scores, and \(\boldsymbol{U_{i}}\) is a p x 1 vector of unique factor scores.
Extension to multiple persons provided for mapping to the observed correlation matrix, \(\boldsymbol{\Sigma} = \boldsymbol{Y}'\boldsymbol{Y}\) and the common factor model becomes
\[ \boldsymbol{\Sigma} = \boldsymbol{\Lambda}\boldsymbol{\Psi}\boldsymbol{\Lambda}' + \boldsymbol{\Theta} \] where \(\boldsymbol{\Sigma}\) is a p x p covariance (or correlation) matrix of the observed variables, \(\boldsymbol{\Lambda}\) is a p x q matrix of factor loadings, \(\boldsymbol{\Psi}\) is a q x q covariance matrix of the latent factor variables, and \(\boldsymbol{\Theta}\) is a diagonal matrix of unique factor variances.
For this example, we use data from the web that are collected and distributed at https://openpsychometrics.org/_rawdata/. The data were obtained from 19,719 participants (rows) who provided answers to the Big Five Personality Test, constructed with items from the International Personality Item Pool. Data columns include gender, age, race, native language, country, and answers to the 50 likert rated statements (1-5;0 if missed; 1 was labeled as “strongly disagree”, 2 was labeled as “disagree”, 3 was labeled as “neither agree not disagree”, 4 was labeled as “agree” and 5 was labeled as “strongly agree”.) The original files can be obtaned at http://openpsychometrics.org/_rawdata/BIG5.zip
#Setting the working directory
#setwd("~/Desktop/FactorAnalysis") #Person 1 Computer
#setwd("~/Desktop/FactorAnalysis") #Person 2 Computer
#Reading the data from web location
dat = read.csv(file="../data/dataBIG5.csv.gz", header=TRUE)
Lets have a quick look at the data file and the descriptives.
#data structure
head(dat,10)
## race age engnat gender hand source country E1 E2 E3 E4 E5 E6 E7 E8 E9
## 1 3 53 1 1 1 1 US 4 2 5 2 5 1 4 3 5
## 2 13 46 1 2 1 1 US 2 2 3 3 3 3 1 5 1
## 3 1 14 2 2 1 1 PK 5 1 1 4 5 1 1 5 5
## 4 3 19 2 2 1 1 RO 2 5 2 4 3 4 3 4 4
## 5 11 25 2 2 1 2 US 3 1 3 3 3 1 3 1 3
## 6 13 31 1 2 1 2 US 1 5 2 4 1 3 2 4 1
## 7 5 20 1 2 1 5 US 5 1 5 1 5 1 5 4 4
## 8 4 23 2 1 1 2 IN 4 3 5 3 5 1 4 3 4
## 9 5 39 1 2 3 4 US 3 1 5 1 5 1 5 2 5
## 10 3 18 1 2 1 5 US 1 4 2 5 2 4 1 4 1
## E10 N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 C1 C2
## 1 1 1 5 2 5 1 1 1 1 1 1 1 5 1 5 2 3 1 5 4 5 4 1
## 2 5 2 3 4 2 3 4 3 2 2 4 1 3 3 4 4 4 2 3 4 3 4 1
## 3 1 5 1 5 5 5 5 5 5 5 5 5 1 5 5 1 5 1 5 5 5 4 1
## 4 5 5 4 4 2 4 5 5 5 4 5 2 5 4 4 3 5 3 4 4 3 3 3
## 5 5 3 3 3 4 3 3 3 3 3 4 5 5 3 5 1 5 1 5 5 5 3 1
## 6 5 1 5 4 5 1 4 4 1 5 2 2 2 3 4 3 4 3 5 5 3 2 5
## 7 1 2 4 2 4 2 2 3 2 2 2 5 5 1 5 1 5 1 5 4 5 2 4
## 8 3 1 4 4 4 1 1 1 1 1 1 2 5 1 4 3 3 1 3 4 5 4 2
## 9 3 2 4 5 3 3 5 5 4 3 3 1 5 1 5 1 5 1 5 5 4 4 3
## 10 5 5 2 5 2 3 4 3 2 3 4 2 3 1 4 2 4 3 3 3 2 5 2
## C3 C4 C5 C6 C7 C8 C9 C10 O1 O2 O3 O4 O5 O6 O7 O8 O9 O10
## 1 5 1 5 1 4 1 4 5 4 1 3 1 5 1 4 2 5 5
## 2 3 2 3 1 5 1 4 4 3 3 3 3 2 3 3 1 3 2
## 3 5 1 5 1 5 1 5 5 4 5 5 1 5 1 5 5 5 5
## 4 4 5 1 4 5 4 2 3 4 3 5 2 4 2 5 2 5 5
## 5 5 3 3 1 1 3 3 3 3 1 1 1 3 1 3 1 5 3
## 6 4 3 3 4 5 3 5 3 4 2 1 3 3 5 5 4 5 3
## 7 3 3 3 3 3 3 3 3 3 1 5 1 4 1 4 3 3 4
## 8 5 1 4 1 4 1 3 5 3 1 5 1 4 1 5 3 2 5
## 9 5 2 5 2 5 2 4 3 3 3 5 3 5 1 5 3 4 5
## 10 4 2 3 2 4 2 4 4 4 2 5 2 4 1 4 3 4 4
Note that for ease, there is no id
variable. We simply assume each row is a separate person. For convenience, we remove the first 8 variables that are not part of the item pool and recode 0 to NA;
#remiving first 7 columns
dat <- dat[ ,8:57]
#replacing 0 with NA
dat[dat == 0] <- NA
#descriptives
describe(dat)
## vars n mean sd median trimmed mad min max range skew kurtosis
## E1 1 19718 2.63 1.23 3 2.57 1.48 1 5 4 0.21 -0.96
## E2 2 19718 2.76 1.31 3 2.70 1.48 1 5 4 0.21 -1.08
## E3 3 19718 3.42 1.24 4 3.50 1.48 1 5 4 -0.35 -0.88
## E4 4 19718 3.15 1.22 3 3.19 1.48 1 5 4 -0.10 -0.94
## E5 5 19718 3.43 1.28 4 3.53 1.48 1 5 4 -0.40 -0.94
## E6 6 19718 2.45 1.24 2 2.34 1.48 1 5 4 0.54 -0.74
## E7 7 19718 2.87 1.43 3 2.83 1.48 1 5 4 0.12 -1.32
## E8 8 19718 3.38 1.27 3 3.45 1.48 1 5 4 -0.28 -1.00
## E9 9 19718 3.09 1.40 3 3.12 1.48 1 5 4 -0.09 -1.28
## E10 10 19718 3.59 1.30 4 3.71 1.48 1 5 4 -0.51 -0.94
## N1 11 19718 3.26 1.31 3 3.33 1.48 1 5 4 -0.21 -1.10
## N2 12 19718 3.23 1.18 3 3.27 1.48 1 5 4 -0.18 -0.85
## N3 13 19718 3.84 1.14 4 3.98 1.48 1 5 4 -0.83 -0.16
## N4 14 19718 2.76 1.22 3 2.70 1.48 1 5 4 0.23 -0.88
## N5 15 19718 2.95 1.27 3 2.94 1.48 1 5 4 0.04 -1.09
## N6 16 19718 2.98 1.32 3 2.98 1.48 1 5 4 0.03 -1.16
## N7 17 19718 3.15 1.30 3 3.19 1.48 1 5 4 -0.11 -1.12
## N8 18 19718 2.80 1.35 3 2.75 1.48 1 5 4 0.17 -1.18
## N9 19 19718 3.14 1.30 3 3.17 1.48 1 5 4 -0.13 -1.12
## N10 20 19718 2.83 1.31 3 2.79 1.48 1 5 4 0.14 -1.12
## A1 21 19718 2.31 1.37 2 2.14 1.48 1 5 4 0.69 -0.84
## A2 22 19718 3.93 1.08 4 4.07 1.48 1 5 4 -0.88 0.07
## A3 23 19718 2.16 1.22 2 2.02 1.48 1 5 4 0.75 -0.55
## A4 24 19718 4.03 1.05 4 4.20 1.48 1 5 4 -1.06 0.55
## A5 25 19718 2.17 1.14 2 2.02 1.48 1 5 4 0.86 -0.06
## A6 26 19718 3.90 1.13 4 4.05 1.48 1 5 4 -0.87 -0.05
## A7 27 19718 2.16 1.13 2 2.02 1.48 1 5 4 0.84 -0.10
## A8 28 19718 3.77 1.04 4 3.87 1.48 1 5 4 -0.69 -0.04
## A9 29 19718 3.94 1.09 4 4.10 1.48 1 5 4 -1.00 0.35
## A10 30 19718 3.68 1.05 4 3.77 1.48 1 5 4 -0.51 -0.28
## C1 31 19718 3.32 1.10 3 3.35 1.48 1 5 4 -0.32 -0.59
## C2 32 19718 2.98 1.37 3 2.97 1.48 1 5 4 -0.03 -1.25
## C3 33 19718 3.98 1.00 4 4.12 1.48 1 5 4 -0.88 0.23
## C4 34 19718 2.65 1.24 3 2.58 1.48 1 5 4 0.31 -0.92
## C5 35 19718 2.70 1.25 3 2.63 1.48 1 5 4 0.25 -0.94
## C6 36 19718 2.92 1.40 3 2.90 1.48 1 5 4 0.06 -1.31
## C7 37 19718 3.65 1.15 4 3.76 1.48 1 5 4 -0.61 -0.40
## C8 38 19718 2.48 1.13 2 2.42 1.48 1 5 4 0.32 -0.66
## C9 39 19718 3.22 1.25 3 3.28 1.48 1 5 4 -0.22 -0.96
## C10 40 19718 3.64 1.01 4 3.71 1.48 1 5 4 -0.43 -0.27
## O1 41 19718 3.69 1.12 4 3.80 1.48 1 5 4 -0.60 -0.36
## O2 42 19718 2.15 1.14 2 2.01 1.48 1 5 4 0.78 -0.23
## O3 43 19718 4.13 1.01 4 4.28 1.48 1 5 4 -1.09 0.61
## O4 44 19718 2.08 1.11 2 1.93 1.48 1 5 4 0.85 -0.02
## O5 45 19718 3.87 0.94 4 3.95 1.48 1 5 4 -0.62 0.09
## O6 46 19718 1.79 1.07 1 1.58 0.00 1 5 4 1.40 1.25
## O7 47 19718 4.07 0.92 4 4.18 1.48 1 5 4 -0.94 0.63
## O8 48 19718 3.21 1.26 3 3.26 1.48 1 5 4 -0.22 -0.97
## O9 49 19718 4.13 0.98 4 4.29 1.48 1 5 4 -1.13 0.83
## O10 50 19718 4.00 0.98 4 4.12 1.48 1 5 4 -0.79 0.04
## se
## E1 0.01
## E2 0.01
## E3 0.01
## E4 0.01
## E5 0.01
## E6 0.01
## E7 0.01
## E8 0.01
## E9 0.01
## E10 0.01
## N1 0.01
## N2 0.01
## N3 0.01
## N4 0.01
## N5 0.01
## N6 0.01
## N7 0.01
## N8 0.01
## N9 0.01
## N10 0.01
## A1 0.01
## A2 0.01
## A3 0.01
## A4 0.01
## A5 0.01
## A6 0.01
## A7 0.01
## A8 0.01
## A9 0.01
## A10 0.01
## C1 0.01
## C2 0.01
## C3 0.01
## C4 0.01
## C5 0.01
## C6 0.01
## C7 0.01
## C8 0.01
## C9 0.01
## C10 0.01
## O1 0.01
## O2 0.01
## O3 0.01
## O4 0.01
## O5 0.01
## O6 0.01
## O7 0.01
## O8 0.01
## O9 0.01
## O10 0.01
Of particular interest for what we are doing is the correlation matrix. We can look at both the numeric and visual versions
round(cor(dat, use="complete.obs"),2)
## E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 N1
## E1 1.00 -0.42 0.47 -0.48 0.48 -0.35 0.59 -0.37 0.46 -0.41 -0.11
## E2 -0.42 1.00 -0.45 0.53 -0.54 0.57 -0.48 0.37 -0.37 0.46 0.06
## E3 0.47 -0.45 1.00 -0.48 0.59 -0.39 0.58 -0.32 0.42 -0.47 -0.24
## E4 -0.48 0.53 -0.48 1.00 -0.51 0.47 -0.50 0.45 -0.45 0.51 0.15
## E5 0.48 -0.54 0.59 -0.51 1.00 -0.48 0.63 -0.35 0.42 -0.54 -0.13
## E6 -0.35 0.57 -0.39 0.47 -0.48 1.00 -0.41 0.32 -0.33 0.41 0.11
## E7 0.59 -0.48 0.58 -0.50 0.63 -0.41 1.00 -0.35 0.43 -0.53 -0.14
## E8 -0.37 0.37 -0.32 0.45 -0.35 0.32 -0.35 1.00 -0.51 0.38 0.09
## E9 0.46 -0.37 0.42 -0.45 0.42 -0.33 0.43 -0.51 1.00 -0.37 -0.13
## E10 -0.41 0.46 -0.47 0.51 -0.54 0.41 -0.53 0.38 -0.37 1.00 0.18
## N1 -0.11 0.06 -0.24 0.15 -0.13 0.11 -0.14 0.09 -0.13 0.18 1.00
## N2 0.15 -0.03 0.28 -0.09 0.13 -0.05 0.16 -0.05 0.14 -0.09 -0.46
## N3 -0.12 0.06 -0.20 0.18 -0.09 0.09 -0.13 0.11 -0.11 0.20 0.55
## N4 0.14 -0.07 0.20 -0.11 0.12 -0.05 0.13 -0.08 0.12 -0.11 -0.25
## N5 -0.07 0.04 -0.18 0.13 -0.10 0.14 -0.11 0.04 -0.06 0.15 0.39
## N6 -0.10 0.04 -0.22 0.15 -0.12 0.13 -0.14 0.05 -0.08 0.18 0.54
## N7 -0.05 0.04 -0.21 0.14 -0.10 0.11 -0.09 0.02 -0.03 0.16 0.42
## N8 -0.06 0.05 -0.23 0.15 -0.12 0.12 -0.11 0.02 -0.04 0.16 0.43
## N9 -0.09 0.05 -0.25 0.15 -0.14 0.12 -0.15 0.07 -0.07 0.20 0.49
## N10 -0.19 0.19 -0.36 0.28 -0.24 0.20 -0.24 0.13 -0.15 0.25 0.42
## A1 -0.02 0.12 -0.12 0.11 -0.11 0.19 -0.08 -0.01 0.02 0.08 0.00
## A2 0.27 -0.27 0.43 -0.25 0.38 -0.29 0.36 -0.17 0.22 -0.24 -0.05
## A3 0.05 -0.04 -0.12 0.02 -0.04 0.01 -0.02 -0.04 0.06 0.05 0.11
## A4 0.09 -0.11 0.22 -0.06 0.19 -0.12 0.15 -0.01 0.04 -0.07 0.07
## A5 -0.11 0.21 -0.24 0.16 -0.24 0.23 -0.18 0.08 -0.07 0.15 0.00
## A6 0.06 -0.06 0.12 -0.01 0.11 -0.02 0.08 0.01 0.01 0.00 0.14
## A7 -0.23 0.30 -0.40 0.28 -0.36 0.34 -0.35 0.17 -0.17 0.25 0.05
## A8 0.15 -0.15 0.26 -0.11 0.24 -0.17 0.21 0.00 0.07 -0.11 -0.01
## A9 0.14 -0.14 0.22 -0.10 0.23 -0.15 0.18 -0.06 0.12 -0.10 0.06
## A10 0.31 -0.25 0.40 -0.25 0.39 -0.25 0.35 -0.14 0.23 -0.24 -0.14
## C1 0.05 -0.01 0.16 -0.05 0.11 -0.06 0.07 0.01 0.04 -0.05 -0.08
## C2 0.04 -0.05 -0.03 0.02 0.01 -0.02 0.02 -0.06 0.05 0.02 0.09
## C3 0.01 0.02 0.07 0.02 0.07 -0.05 0.03 0.06 0.00 0.01 -0.02
## C4 -0.06 0.04 -0.21 0.16 -0.13 0.12 -0.09 0.03 -0.04 0.13 0.26
## C5 0.08 -0.02 0.17 -0.07 0.15 -0.02 0.13 -0.02 0.05 -0.09 -0.10
## C6 -0.01 -0.01 -0.10 0.06 -0.05 0.06 -0.04 -0.01 0.01 0.08 0.13
## C7 -0.03 0.02 0.03 0.03 0.03 -0.02 0.00 0.08 -0.02 0.04 0.05
## C8 -0.04 0.08 -0.18 0.13 -0.14 0.14 -0.10 0.03 -0.02 0.13 0.14
## C9 0.05 -0.03 0.15 -0.05 0.13 -0.04 0.08 0.00 0.04 -0.03 0.01
## C10 0.05 -0.02 0.11 -0.02 0.10 -0.08 0.07 0.00 0.06 -0.02 -0.05
## O1 0.04 -0.06 0.03 -0.05 0.09 -0.18 0.06 -0.03 0.07 -0.07 -0.05
## O2 -0.03 0.06 -0.07 0.10 -0.07 0.19 -0.06 0.05 -0.08 0.10 0.17
## O3 0.07 -0.04 0.00 0.03 0.06 -0.09 0.04 -0.04 0.09 -0.01 0.03
## O4 -0.01 0.04 -0.02 0.06 -0.05 0.15 -0.04 0.04 -0.05 0.06 0.09
## O5 0.18 -0.13 0.16 -0.14 0.20 -0.23 0.16 -0.13 0.22 -0.14 -0.13
## O6 -0.09 0.10 -0.08 0.09 -0.11 0.19 -0.09 0.10 -0.12 0.09 0.07
## O7 0.08 -0.06 0.14 -0.07 0.12 -0.15 0.10 -0.02 0.12 -0.09 -0.17
## O8 0.00 -0.02 -0.07 0.01 0.01 -0.11 0.01 -0.01 0.05 -0.01 0.02
## O9 -0.08 0.07 -0.09 0.11 -0.03 -0.02 -0.05 0.08 -0.04 0.11 0.11
## O10 0.16 -0.14 0.12 -0.13 0.20 -0.26 0.16 -0.12 0.20 -0.13 -0.09
## N2 N3 N4 N5 N6 N7 N8 N9 N10 A1 A2
## E1 0.15 -0.12 0.14 -0.07 -0.10 -0.05 -0.06 -0.09 -0.19 -0.02 0.27
## E2 -0.03 0.06 -0.07 0.04 0.04 0.04 0.05 0.05 0.19 0.12 -0.27
## E3 0.28 -0.20 0.20 -0.18 -0.22 -0.21 -0.23 -0.25 -0.36 -0.12 0.43
## E4 -0.09 0.18 -0.11 0.13 0.15 0.14 0.15 0.15 0.28 0.11 -0.25
## E5 0.13 -0.09 0.12 -0.10 -0.12 -0.10 -0.12 -0.14 -0.24 -0.11 0.38
## E6 -0.05 0.09 -0.05 0.14 0.13 0.11 0.12 0.12 0.20 0.19 -0.29
## E7 0.16 -0.13 0.13 -0.11 -0.14 -0.09 -0.11 -0.15 -0.24 -0.08 0.36
## E8 -0.05 0.11 -0.08 0.04 0.05 0.02 0.02 0.07 0.13 -0.01 -0.17
## E9 0.14 -0.11 0.12 -0.06 -0.08 -0.03 -0.04 -0.07 -0.15 0.02 0.22
## E10 -0.09 0.20 -0.11 0.15 0.18 0.16 0.16 0.20 0.25 0.08 -0.24
## N1 -0.46 0.55 -0.25 0.39 0.54 0.42 0.43 0.49 0.42 0.00 -0.05
## N2 1.00 -0.40 0.26 -0.26 -0.38 -0.29 -0.33 -0.34 -0.36 0.02 0.12
## N3 -0.40 1.00 -0.25 0.32 0.45 0.36 0.35 0.38 0.39 -0.02 0.01
## N4 0.26 -0.25 1.00 -0.13 -0.21 -0.24 -0.25 -0.20 -0.39 0.06 0.04
## N5 -0.26 0.32 -0.13 1.00 0.48 0.37 0.39 0.43 0.31 0.08 -0.07
## N6 -0.38 0.45 -0.21 0.48 1.00 0.51 0.54 0.60 0.45 0.05 -0.08
## N7 -0.29 0.36 -0.24 0.37 0.51 1.00 0.77 0.50 0.48 0.11 -0.07
## N8 -0.33 0.35 -0.25 0.39 0.54 0.77 1.00 0.53 0.54 0.12 -0.10
## N9 -0.34 0.38 -0.20 0.43 0.60 0.50 0.53 1.00 0.41 0.11 -0.15
## N10 -0.36 0.39 -0.39 0.31 0.45 0.48 0.54 0.41 1.00 0.08 -0.14
## A1 0.02 -0.02 0.06 0.08 0.05 0.11 0.12 0.11 0.08 1.00 -0.23
## A2 0.12 0.01 0.04 -0.07 -0.08 -0.07 -0.10 -0.15 -0.14 -0.23 1.00
## A3 -0.06 0.08 -0.06 0.13 0.16 0.22 0.21 0.31 0.16 0.19 -0.15
## A4 0.02 0.14 0.01 0.01 0.06 -0.02 -0.02 -0.09 -0.02 -0.33 0.40
## A5 0.01 -0.07 0.02 0.06 0.01 0.06 0.06 0.12 0.06 0.34 -0.42
## A6 -0.01 0.18 -0.01 0.11 0.18 0.06 0.06 -0.01 0.05 -0.21 0.25
## A7 -0.05 -0.01 -0.01 0.11 0.08 0.13 0.14 0.19 0.17 0.35 -0.57
## A8 0.07 0.06 0.03 -0.06 -0.03 -0.06 -0.07 -0.13 -0.08 -0.26 0.36
## A9 0.00 0.14 0.00 0.03 0.08 0.02 0.03 -0.05 0.01 -0.25 0.38
## A10 0.17 -0.07 0.13 -0.10 -0.13 -0.12 -0.14 -0.19 -0.19 -0.13 0.32
## C1 0.08 -0.05 0.10 -0.15 -0.14 -0.16 -0.17 -0.12 -0.18 -0.03 0.07
## C2 0.03 0.06 -0.05 0.09 0.11 0.13 0.12 0.09 0.11 -0.01 0.07
## C3 0.04 0.10 0.02 -0.10 -0.07 -0.06 -0.08 -0.04 -0.05 -0.02 0.09
## C4 -0.14 0.21 -0.13 0.26 0.30 0.33 0.35 0.28 0.34 0.08 -0.05
## C5 0.05 -0.06 0.15 -0.10 -0.10 -0.14 -0.13 -0.13 -0.17 0.02 0.06
## C6 -0.02 0.10 -0.05 0.17 0.20 0.19 0.19 0.15 0.16 0.05 0.00
## C7 -0.04 0.10 0.02 -0.01 -0.01 -0.04 -0.07 0.03 -0.06 -0.07 0.02
## C8 -0.04 0.10 -0.09 0.19 0.19 0.25 0.28 0.20 0.24 0.17 -0.11
## C9 -0.02 0.06 0.08 -0.07 -0.05 -0.11 -0.11 -0.03 -0.13 -0.05 0.08
## C10 0.03 0.01 0.06 -0.09 -0.07 -0.09 -0.10 -0.04 -0.09 -0.03 0.08
## O1 0.04 -0.05 -0.02 -0.12 -0.09 -0.09 -0.08 -0.05 0.00 -0.11 0.07
## O2 -0.08 0.14 0.01 0.21 0.20 0.14 0.15 0.17 0.09 0.12 -0.05
## O3 0.03 0.08 -0.03 0.01 0.04 0.08 0.07 0.04 0.07 -0.02 0.08
## O4 -0.04 0.05 0.06 0.13 0.12 0.07 0.08 0.12 0.01 0.12 -0.11
## O5 0.13 -0.09 0.08 -0.09 -0.11 -0.08 -0.09 -0.07 -0.12 -0.02 0.11
## O6 -0.07 0.04 0.01 0.09 0.07 0.02 0.03 0.08 0.06 0.05 -0.10
## O7 0.14 -0.11 0.07 -0.16 -0.15 -0.10 -0.11 -0.11 -0.11 -0.01 0.08
## O8 -0.02 0.02 -0.06 -0.03 -0.01 0.06 0.06 0.06 0.10 -0.05 -0.01
## O9 -0.06 0.18 -0.07 0.05 0.09 0.08 0.07 0.09 0.17 -0.11 0.09
## O10 0.09 -0.06 0.04 -0.09 -0.08 -0.03 -0.04 -0.06 -0.05 -0.04 0.14
## A3 A4 A5 A6 A7 A8 A9 A10 C1 C2 C3
## E1 0.05 0.09 -0.11 0.06 -0.23 0.15 0.14 0.31 0.05 0.04 0.01
## E2 -0.04 -0.11 0.21 -0.06 0.30 -0.15 -0.14 -0.25 -0.01 -0.05 0.02
## E3 -0.12 0.22 -0.24 0.12 -0.40 0.26 0.22 0.40 0.16 -0.03 0.07
## E4 0.02 -0.06 0.16 -0.01 0.28 -0.11 -0.10 -0.25 -0.05 0.02 0.02
## E5 -0.04 0.19 -0.24 0.11 -0.36 0.24 0.23 0.39 0.11 0.01 0.07
## E6 0.01 -0.12 0.23 -0.02 0.34 -0.17 -0.15 -0.25 -0.06 -0.02 -0.05
## E7 -0.02 0.15 -0.18 0.08 -0.35 0.21 0.18 0.35 0.07 0.02 0.03
## E8 -0.04 -0.01 0.08 0.01 0.17 0.00 -0.06 -0.14 0.01 -0.06 0.06
## E9 0.06 0.04 -0.07 0.01 -0.17 0.07 0.12 0.23 0.04 0.05 0.00
## E10 0.05 -0.07 0.15 0.00 0.25 -0.11 -0.10 -0.24 -0.05 0.02 0.01
## N1 0.11 0.07 0.00 0.14 0.05 -0.01 0.06 -0.14 -0.08 0.09 -0.02
## N2 -0.06 0.02 0.01 -0.01 -0.05 0.07 0.00 0.17 0.08 0.03 0.04
## N3 0.08 0.14 -0.07 0.18 -0.01 0.06 0.14 -0.07 -0.05 0.06 0.10
## N4 -0.06 0.01 0.02 -0.01 -0.01 0.03 0.00 0.13 0.10 -0.05 0.02
## N5 0.13 0.01 0.06 0.11 0.11 -0.06 0.03 -0.10 -0.15 0.09 -0.10
## N6 0.16 0.06 0.01 0.18 0.08 -0.03 0.08 -0.13 -0.14 0.11 -0.07
## N7 0.22 -0.02 0.06 0.06 0.13 -0.06 0.02 -0.12 -0.16 0.13 -0.06
## N8 0.21 -0.02 0.06 0.06 0.14 -0.07 0.03 -0.14 -0.17 0.12 -0.08
## N9 0.31 -0.09 0.12 -0.01 0.19 -0.13 -0.05 -0.19 -0.12 0.09 -0.04
## N10 0.16 -0.02 0.06 0.05 0.17 -0.08 0.01 -0.19 -0.18 0.11 -0.05
## A1 0.19 -0.33 0.34 -0.21 0.35 -0.26 -0.25 -0.13 -0.03 -0.01 -0.02
## A2 -0.15 0.40 -0.42 0.25 -0.57 0.36 0.38 0.32 0.07 0.07 0.09
## A3 1.00 -0.31 0.24 -0.27 0.24 -0.20 -0.25 -0.22 -0.12 0.15 -0.06
## A4 -0.31 1.00 -0.50 0.51 -0.44 0.46 0.65 0.32 0.04 0.02 0.09
## A5 0.24 -0.50 1.00 -0.32 0.56 -0.41 -0.45 -0.25 -0.03 -0.02 -0.05
## A6 -0.27 0.51 -0.32 1.00 -0.28 0.35 0.48 0.26 0.00 0.02 0.03
## A7 0.24 -0.44 0.56 -0.28 1.00 -0.39 -0.40 -0.30 -0.05 -0.01 -0.06
## A8 -0.20 0.46 -0.41 0.35 -0.39 1.00 0.43 0.33 0.09 0.00 0.12
## A9 -0.25 0.65 -0.45 0.48 -0.40 0.43 1.00 0.35 0.05 0.01 0.11
## A10 -0.22 0.32 -0.25 0.26 -0.30 0.33 0.35 1.00 0.11 -0.03 0.12
## C1 -0.12 0.04 -0.03 0.00 -0.05 0.09 0.05 0.11 1.00 -0.26 0.30
## C2 0.15 0.02 -0.02 0.02 -0.01 0.00 0.01 -0.03 -0.26 1.00 -0.16
## C3 -0.06 0.09 -0.05 0.03 -0.06 0.12 0.11 0.12 0.30 -0.16 1.00
## C4 0.27 -0.03 0.04 0.00 0.10 -0.06 -0.04 -0.17 -0.35 0.40 -0.19
## C5 -0.18 0.09 -0.05 0.08 -0.06 0.11 0.11 0.17 0.39 -0.36 0.20
## C6 0.17 -0.01 0.02 0.03 0.04 -0.04 -0.01 -0.08 -0.31 0.51 -0.21
## C7 -0.05 0.05 -0.01 0.04 -0.02 0.07 0.04 0.05 0.31 -0.26 0.25
## C8 0.23 -0.11 0.14 -0.06 0.17 -0.14 -0.10 -0.16 -0.32 0.23 -0.17
## C9 -0.12 0.10 -0.07 0.07 -0.08 0.12 0.13 0.12 0.43 -0.27 0.23
## C10 -0.10 0.07 -0.04 0.04 -0.05 0.10 0.10 0.19 0.33 -0.14 0.34
## O1 0.04 -0.01 -0.01 -0.08 -0.04 0.02 0.00 0.05 0.13 0.07 0.15
## O2 0.05 -0.01 0.06 0.08 0.08 -0.02 -0.03 -0.05 -0.07 0.00 -0.13
## O3 0.07 0.07 -0.03 0.04 -0.04 0.04 0.10 0.08 -0.01 0.09 0.12
## O4 0.05 -0.07 0.12 0.01 0.13 -0.05 -0.07 -0.04 0.00 -0.04 -0.09
## O5 0.02 0.03 -0.01 0.00 -0.07 0.06 0.08 0.20 0.20 0.01 0.20
## O6 0.04 -0.06 0.08 -0.02 0.13 -0.06 -0.10 -0.11 -0.02 -0.02 -0.10
## O7 -0.04 0.03 -0.02 -0.04 -0.04 0.07 0.07 0.16 0.22 -0.01 0.24
## O8 0.16 -0.07 0.04 -0.11 0.04 -0.03 -0.04 -0.03 0.04 0.11 0.10
## O9 -0.01 0.14 -0.08 0.10 -0.06 0.11 0.15 0.05 0.03 0.05 0.14
## O10 0.04 0.04 -0.05 0.01 -0.10 0.08 0.10 0.17 0.11 0.06 0.18
## C4 C5 C6 C7 C8 C9 C10 O1 O2 O3 O4
## E1 -0.06 0.08 -0.01 -0.03 -0.04 0.05 0.05 0.04 -0.03 0.07 -0.01
## E2 0.04 -0.02 -0.01 0.02 0.08 -0.03 -0.02 -0.06 0.06 -0.04 0.04
## E3 -0.21 0.17 -0.10 0.03 -0.18 0.15 0.11 0.03 -0.07 0.00 -0.02
## E4 0.16 -0.07 0.06 0.03 0.13 -0.05 -0.02 -0.05 0.10 0.03 0.06
## E5 -0.13 0.15 -0.05 0.03 -0.14 0.13 0.10 0.09 -0.07 0.06 -0.05
## E6 0.12 -0.02 0.06 -0.02 0.14 -0.04 -0.08 -0.18 0.19 -0.09 0.15
## E7 -0.09 0.13 -0.04 0.00 -0.10 0.08 0.07 0.06 -0.06 0.04 -0.04
## E8 0.03 -0.02 -0.01 0.08 0.03 0.00 0.00 -0.03 0.05 -0.04 0.04
## E9 -0.04 0.05 0.01 -0.02 -0.02 0.04 0.06 0.07 -0.08 0.09 -0.05
## E10 0.13 -0.09 0.08 0.04 0.13 -0.03 -0.02 -0.07 0.10 -0.01 0.06
## N1 0.26 -0.10 0.13 0.05 0.14 0.01 -0.05 -0.05 0.17 0.03 0.09
## N2 -0.14 0.05 -0.02 -0.04 -0.04 -0.02 0.03 0.04 -0.08 0.03 -0.04
## N3 0.21 -0.06 0.10 0.10 0.10 0.06 0.01 -0.05 0.14 0.08 0.05
## N4 -0.13 0.15 -0.05 0.02 -0.09 0.08 0.06 -0.02 0.01 -0.03 0.06
## N5 0.26 -0.10 0.17 -0.01 0.19 -0.07 -0.09 -0.12 0.21 0.01 0.13
## N6 0.30 -0.10 0.20 -0.01 0.19 -0.05 -0.07 -0.09 0.20 0.04 0.12
## N7 0.33 -0.14 0.19 -0.04 0.25 -0.11 -0.09 -0.09 0.14 0.08 0.07
## N8 0.35 -0.13 0.19 -0.07 0.28 -0.11 -0.10 -0.08 0.15 0.07 0.08
## N9 0.28 -0.13 0.15 0.03 0.20 -0.03 -0.04 -0.05 0.17 0.04 0.12
## N10 0.34 -0.17 0.16 -0.06 0.24 -0.13 -0.09 0.00 0.09 0.07 0.01
## A1 0.08 0.02 0.05 -0.07 0.17 -0.05 -0.03 -0.11 0.12 -0.02 0.12
## A2 -0.05 0.06 0.00 0.02 -0.11 0.08 0.08 0.07 -0.05 0.08 -0.11
## A3 0.27 -0.18 0.17 -0.05 0.23 -0.12 -0.10 0.04 0.05 0.07 0.05
## A4 -0.03 0.09 -0.01 0.05 -0.11 0.10 0.07 -0.01 -0.01 0.07 -0.07
## A5 0.04 -0.05 0.02 -0.01 0.14 -0.07 -0.04 -0.01 0.06 -0.03 0.12
## A6 0.00 0.08 0.03 0.04 -0.06 0.07 0.04 -0.08 0.08 0.04 0.01
## A7 0.10 -0.06 0.04 -0.02 0.17 -0.08 -0.05 -0.04 0.08 -0.04 0.13
## A8 -0.06 0.11 -0.04 0.07 -0.14 0.12 0.10 0.02 -0.02 0.04 -0.05
## A9 -0.04 0.11 -0.01 0.04 -0.10 0.13 0.10 0.00 -0.03 0.10 -0.07
## A10 -0.17 0.17 -0.08 0.05 -0.16 0.12 0.19 0.05 -0.05 0.08 -0.04
## C1 -0.35 0.39 -0.31 0.31 -0.32 0.43 0.33 0.13 -0.07 -0.01 0.00
## C2 0.40 -0.36 0.51 -0.26 0.23 -0.27 -0.14 0.07 0.00 0.09 -0.04
## C3 -0.19 0.20 -0.21 0.25 -0.17 0.23 0.34 0.15 -0.13 0.12 -0.09
## C4 1.00 -0.36 0.46 -0.26 0.39 -0.31 -0.23 -0.03 0.11 0.09 0.04
## C5 -0.36 1.00 -0.39 0.29 -0.37 0.42 0.28 -0.03 0.03 -0.07 0.05
## C6 0.46 -0.39 1.00 -0.30 0.31 -0.32 -0.20 0.00 0.05 0.09 0.00
## C7 -0.26 0.29 -0.30 1.00 -0.21 0.40 0.28 0.06 0.01 -0.02 0.03
## C8 0.39 -0.37 0.31 -0.21 1.00 -0.31 -0.27 -0.07 0.09 0.03 0.06
## C9 -0.31 0.42 -0.32 0.40 -0.31 1.00 0.31 0.00 0.04 -0.06 0.06
## C10 -0.23 0.28 -0.20 0.28 -0.27 0.31 1.00 0.14 -0.11 0.05 -0.07
## O1 -0.03 -0.03 0.00 0.06 -0.07 0.00 0.14 1.00 -0.33 0.24 -0.23
## O2 0.11 0.03 0.05 0.01 0.09 0.04 -0.11 -0.33 1.00 -0.21 0.54
## O3 0.09 -0.07 0.09 -0.02 0.03 -0.06 0.05 0.24 -0.21 1.00 -0.23
## O4 0.04 0.05 0.00 0.03 0.06 0.06 -0.07 -0.23 0.54 -0.23 1.00
## O5 -0.13 0.09 -0.03 0.08 -0.11 0.09 0.24 0.31 -0.28 0.30 -0.19
## O6 0.04 0.03 0.01 0.03 0.05 0.03 -0.06 -0.21 0.28 -0.53 0.28
## O7 -0.15 0.10 -0.06 0.09 -0.13 0.08 0.26 0.34 -0.37 0.16 -0.19
## O8 0.09 -0.10 0.07 0.02 0.04 -0.05 0.10 0.63 -0.28 0.21 -0.22
## O9 0.05 -0.04 0.02 0.10 -0.01 0.05 0.11 0.20 -0.16 0.21 -0.20
## O10 -0.02 0.02 0.03 0.03 -0.06 0.02 0.19 0.30 -0.31 0.43 -0.28
## O5 O6 O7 O8 O9 O10
## E1 0.18 -0.09 0.08 0.00 -0.08 0.16
## E2 -0.13 0.10 -0.06 -0.02 0.07 -0.14
## E3 0.16 -0.08 0.14 -0.07 -0.09 0.12
## E4 -0.14 0.09 -0.07 0.01 0.11 -0.13
## E5 0.20 -0.11 0.12 0.01 -0.03 0.20
## E6 -0.23 0.19 -0.15 -0.11 -0.02 -0.26
## E7 0.16 -0.09 0.10 0.01 -0.05 0.16
## E8 -0.13 0.10 -0.02 -0.01 0.08 -0.12
## E9 0.22 -0.12 0.12 0.05 -0.04 0.20
## E10 -0.14 0.09 -0.09 -0.01 0.11 -0.13
## N1 -0.13 0.07 -0.17 0.02 0.11 -0.09
## N2 0.13 -0.07 0.14 -0.02 -0.06 0.09
## N3 -0.09 0.04 -0.11 0.02 0.18 -0.06
## N4 0.08 0.01 0.07 -0.06 -0.07 0.04
## N5 -0.09 0.09 -0.16 -0.03 0.05 -0.09
## N6 -0.11 0.07 -0.15 -0.01 0.09 -0.08
## N7 -0.08 0.02 -0.10 0.06 0.08 -0.03
## N8 -0.09 0.03 -0.11 0.06 0.07 -0.04
## N9 -0.07 0.08 -0.11 0.06 0.09 -0.06
## N10 -0.12 0.06 -0.11 0.10 0.17 -0.05
## A1 -0.02 0.05 -0.01 -0.05 -0.11 -0.04
## A2 0.11 -0.10 0.08 -0.01 0.09 0.14
## A3 0.02 0.04 -0.04 0.16 -0.01 0.04
## A4 0.03 -0.06 0.03 -0.07 0.14 0.04
## A5 -0.01 0.08 -0.02 0.04 -0.08 -0.05
## A6 0.00 -0.02 -0.04 -0.11 0.10 0.01
## A7 -0.07 0.13 -0.04 0.04 -0.06 -0.10
## A8 0.06 -0.06 0.07 -0.03 0.11 0.08
## A9 0.08 -0.10 0.07 -0.04 0.15 0.10
## A10 0.20 -0.11 0.16 -0.03 0.05 0.17
## C1 0.20 -0.02 0.22 0.04 0.03 0.11
## C2 0.01 -0.02 -0.01 0.11 0.05 0.06
## C3 0.20 -0.10 0.24 0.10 0.14 0.18
## C4 -0.13 0.04 -0.15 0.09 0.05 -0.02
## C5 0.09 0.03 0.10 -0.10 -0.04 0.02
## C6 -0.03 0.01 -0.06 0.07 0.02 0.03
## C7 0.08 0.03 0.09 0.02 0.10 0.03
## C8 -0.11 0.05 -0.13 0.04 -0.01 -0.06
## C9 0.09 0.03 0.08 -0.05 0.05 0.02
## C10 0.24 -0.06 0.26 0.10 0.11 0.19
## O1 0.31 -0.21 0.34 0.63 0.20 0.30
## O2 -0.28 0.28 -0.37 -0.28 -0.16 -0.31
## O3 0.30 -0.53 0.16 0.21 0.21 0.43
## O4 -0.19 0.28 -0.19 -0.22 -0.20 -0.28
## O5 1.00 -0.33 0.38 0.25 0.14 0.62
## O6 -0.33 1.00 -0.18 -0.14 -0.12 -0.43
## O7 0.38 -0.18 1.00 0.27 0.11 0.33
## O8 0.25 -0.14 0.27 1.00 0.19 0.27
## O9 0.14 -0.12 0.11 0.19 1.00 0.19
## O10 0.62 -0.43 0.33 0.27 0.19 1.00
And a re-organized compact visual version from the corrplot
package.
#visusal correlation matrix
corrplot(cor(dat, use="complete.obs"), order = "original", tl.col='black', tl.cex=.75)
That is a bit messy for interpretation (mix of positive and negative correlations), so the function has some reordering options that are helpful.
corrplot(cor(dat, use="complete.obs"), order = "hclust", tl.col='black', tl.cex=.75)
We see that there are some “clumps” of items that are positively correlated - evidence of some common factors.
The correlations are all based on standardized data. Lets standardize for ease.
dat_standard <- data.frame(scale(dat, center=TRUE, scale=TRUE))
#descriptives
describe(dat_standard)
## vars n mean sd median trimmed mad min max range skew kurtosis
## E1 1 19718 0 1 0.30 -0.05 1.20 -1.32 1.92 3.25 0.21 -0.96
## E2 2 19718 0 1 0.18 -0.05 1.13 -1.34 1.71 3.04 0.21 -1.08
## E3 3 19718 0 1 0.47 0.07 1.20 -1.95 1.28 3.23 -0.35 -0.88
## E4 4 19718 0 1 -0.12 0.03 1.21 -1.76 1.51 3.27 -0.10 -0.94
## E5 5 19718 0 1 0.44 0.08 1.16 -1.90 1.22 3.12 -0.40 -0.94
## E6 6 19718 0 1 -0.36 -0.09 1.19 -1.17 2.05 3.22 0.54 -0.74
## E7 7 19718 0 1 0.09 -0.02 1.04 -1.30 1.49 2.79 0.12 -1.32
## E8 8 19718 0 1 -0.30 0.06 1.17 -1.88 1.28 3.16 -0.28 -1.00
## E9 9 19718 0 1 -0.07 0.02 1.06 -1.50 1.36 2.86 -0.09 -1.28
## E10 10 19718 0 1 0.32 0.09 1.14 -1.98 1.08 3.07 -0.51 -0.94
## N1 11 19718 0 1 -0.20 0.05 1.13 -1.73 1.33 3.06 -0.21 -1.10
## N2 12 19718 0 1 -0.20 0.03 1.26 -1.90 1.50 3.40 -0.18 -0.85
## N3 13 19718 0 1 0.14 0.12 1.30 -2.50 1.02 3.51 -0.83 -0.16
## N4 14 19718 0 1 0.20 -0.05 1.21 -1.44 1.84 3.28 0.23 -0.88
## N5 15 19718 0 1 0.04 -0.01 1.16 -1.53 1.61 3.14 0.04 -1.09
## N6 16 19718 0 1 0.01 0.00 1.12 -1.50 1.53 3.03 0.03 -1.16
## N7 17 19718 0 1 -0.12 0.03 1.14 -1.66 1.42 3.08 -0.11 -1.12
## N8 18 19718 0 1 0.15 -0.04 1.10 -1.34 1.63 2.96 0.17 -1.18
## N9 19 19718 0 1 -0.10 0.03 1.14 -1.64 1.44 3.08 -0.13 -1.12
## N10 20 19718 0 1 0.13 -0.03 1.13 -1.40 1.65 3.05 0.14 -1.12
## A1 21 19718 0 1 -0.23 -0.13 1.08 -0.96 1.96 2.92 0.69 -0.84
## A2 22 19718 0 1 0.07 0.14 1.38 -2.71 1.00 3.71 -0.88 0.07
## A3 23 19718 0 1 -0.13 -0.12 1.22 -0.96 2.33 3.29 0.75 -0.55
## A4 24 19718 0 1 -0.03 0.16 1.42 -2.90 0.93 3.83 -1.06 0.55
## A5 25 19718 0 1 -0.15 -0.13 1.30 -1.02 2.48 3.50 0.86 -0.06
## A6 26 19718 0 1 0.09 0.14 1.31 -2.56 0.98 3.54 -0.87 -0.05
## A7 27 19718 0 1 -0.14 -0.12 1.31 -1.03 2.51 3.53 0.84 -0.10
## A8 28 19718 0 1 0.23 0.10 1.43 -2.67 1.19 3.86 -0.69 -0.04
## A9 29 19718 0 1 0.05 0.15 1.37 -2.71 0.97 3.69 -1.00 0.35
## A10 30 19718 0 1 0.30 0.08 1.41 -2.55 1.25 3.80 -0.51 -0.28
## C1 31 19718 0 1 -0.29 0.03 1.35 -2.11 1.53 3.64 -0.32 -0.59
## C2 32 19718 0 1 0.02 0.00 1.08 -1.45 1.48 2.93 -0.03 -1.25
## C3 33 19718 0 1 0.02 0.14 1.48 -2.98 1.01 3.99 -0.88 0.23
## C4 34 19718 0 1 0.28 -0.06 1.19 -1.33 1.89 3.22 0.31 -0.92
## C5 35 19718 0 1 0.24 -0.06 1.19 -1.36 1.84 3.20 0.25 -0.94
## C6 36 19718 0 1 0.06 -0.01 1.06 -1.37 1.48 2.86 0.06 -1.31
## C7 37 19718 0 1 0.31 0.09 1.29 -2.30 1.17 3.47 -0.61 -0.40
## C8 38 19718 0 1 -0.43 -0.06 1.31 -1.31 2.22 3.53 0.32 -0.66
## C9 39 19718 0 1 -0.18 0.05 1.19 -1.79 1.42 3.21 -0.22 -0.96
## C10 40 19718 0 1 0.36 0.07 1.46 -2.61 1.35 3.95 -0.43 -0.27
## O1 41 19718 0 1 0.28 0.09 1.33 -2.41 1.17 3.58 -0.60 -0.36
## O2 42 19718 0 1 -0.13 -0.12 1.31 -1.01 2.51 3.52 0.78 -0.23
## O3 43 19718 0 1 -0.13 0.15 1.47 -3.11 0.87 3.97 -1.09 0.61
## O4 44 19718 0 1 -0.07 -0.14 1.34 -0.97 2.63 3.60 0.85 -0.02
## O5 45 19718 0 1 0.13 0.08 1.58 -3.06 1.20 4.26 -0.62 0.09
## O6 46 19718 0 1 -0.74 -0.20 0.00 -0.74 3.00 3.74 1.40 1.25
## O7 47 19718 0 1 -0.08 0.12 1.61 -3.33 1.00 4.33 -0.94 0.63
## O8 48 19718 0 1 -0.17 0.04 1.18 -1.75 1.42 3.18 -0.22 -0.97
## O9 49 19718 0 1 -0.14 0.15 1.51 -3.19 0.88 4.07 -1.13 0.83
## O10 50 19718 0 1 -0.01 0.12 1.51 -3.06 1.01 4.07 -0.79 0.04
## se
## E1 0.01
## E2 0.01
## E3 0.01
## E4 0.01
## E5 0.01
## E6 0.01
## E7 0.01
## E8 0.01
## E9 0.01
## E10 0.01
## N1 0.01
## N2 0.01
## N3 0.01
## N4 0.01
## N5 0.01
## N6 0.01
## N7 0.01
## N8 0.01
## N9 0.01
## N10 0.01
## A1 0.01
## A2 0.01
## A3 0.01
## A4 0.01
## A5 0.01
## A6 0.01
## A7 0.01
## A8 0.01
## A9 0.01
## A10 0.01
## C1 0.01
## C2 0.01
## C3 0.01
## C4 0.01
## C5 0.01
## C6 0.01
## C7 0.01
## C8 0.01
## C9 0.01
## C10 0.01
## O1 0.01
## O2 0.01
## O3 0.01
## O4 0.01
## O5 0.01
## O6 0.01
## O7 0.01
## O8 0.01
## O9 0.01
## O10 0.01
##B. Example 1: Basic EFA orientation & interpretation
The base package in R has the function factanal()
for doing EFA. This function uses ‘maximum likelihood’ (ML, as opposed to, say, ‘principal components’, PC) to derive the factors. When ML is used, there exists a (conservative) significance test for the null hypothesis that the q extracted factors are sufficient. This is convenient.
The psych
package has the function fa()
for doing EFA that has many additional options.
For the moment, we use the function in the base package factanal()
. By default the function factanal() will rotate the factors using varimax rotation (rotation = ‘varimax’). Let’s start by just looking at the unrotated factors.
On a technical note, here we are doing maximum likelihood (ML) estimation, assuming that our observed variables come from a mixture of several Gaussian distributions (i.e., each latent variable is from a unique Gaussian distribution with some noise). Options embedded in the fa()
function allow for other possibiites.
Our goal is to figure out which variables “belong” to which distribution/latent factor.
EFAresult1 = factanal(~ ., data=dat_standard, factors = 10, rotation = "none",
na.action = na.exclude) #note the formula specification allows NA
EFAresult1
##
## Call:
## factanal(x = ~., factors = 10, data = dat_standard, na.action = na.exclude, rotation = "none")
##
## Uniquenesses:
## E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 N1 N2
## 0.515 0.480 0.396 0.432 0.394 0.516 0.397 0.663 0.598 0.516 0.434 0.577
## N3 N4 N5 N6 N7 N8 N9 N10 A1 A2 A3 A4
## 0.519 0.806 0.660 0.426 0.295 0.168 0.468 0.529 0.734 0.493 0.702 0.328
## A5 A6 A7 A8 A9 A10 C1 C2 C3 C4 C5 C6
## 0.494 0.562 0.368 0.634 0.394 0.645 0.598 0.601 0.752 0.516 0.572 0.527
## C7 C8 C9 C10 O1 O2 O3 O4 O5 O6 O7 O8
## 0.691 0.682 0.589 0.699 0.356 0.602 0.395 0.690 0.404 0.496 0.663 0.367
## O9 O10
## 0.815 0.378
##
## Loadings:
## Factor1 Factor2 Factor3 Factor4 Factor5 Factor6 Factor7 Factor8
## E1 -0.453 0.333 -0.361 0.120
## E2 0.445 -0.391 0.349 0.124 0.128
## E3 -0.662 0.257 -0.110 -0.233
## E4 0.532 -0.264 0.400 0.115
## E5 -0.590 0.402 -0.270 0.118
## E6 0.501 -0.324 -0.146 0.175 0.146 0.174 0.106
## E7 -0.564 0.369 -0.344
## E8 0.320 -0.252 0.369
## E9 -0.397 0.294 0.136 -0.333
## E10 0.525 -0.225 0.358
## N1 0.489 0.397 0.109 0.122 -0.190 -0.311
## N2 -0.394 -0.236 -0.159 0.240 0.192 0.263
## N3 0.393 0.382 -0.103 0.222 0.108 -0.137 -0.288
## N4 -0.294 -0.176 0.145 0.198
## N5 0.432 0.307 0.137 -0.164
## N6 0.539 0.459 0.115 -0.191
## N7 0.580 0.526 0.152 0.101 0.195
## N8 0.629 0.556 0.174 0.102 -0.103 0.253
## N9 0.559 0.356 0.199 0.101 -0.167
## N10 0.591 0.310 0.109
## A1 0.242 -0.169 0.137 -0.261 0.157 0.197 0.155
## A2 -0.449 0.407 -0.165 0.111 -0.144
## A3 0.275 0.293 -0.306 0.117
## A4 -0.276 0.433 -0.368 0.441 -0.201
## A5 0.332 -0.375 0.291 -0.280 0.204 0.157
## A6 -0.108 0.365 -0.342 0.325 -0.113 0.103 0.133
## A7 0.489 -0.395 0.252 -0.165 0.185 0.117 0.181
## A8 -0.323 0.318 -0.242 0.284
## A9 -0.272 0.474 -0.287 0.385 -0.122
## A10 -0.466 0.268 0.129 0.149
## C1 -0.281 -0.105 0.252 0.474
## C2 0.135 0.208 0.152 -0.160 -0.469 0.228
## C3 -0.171 0.119 0.322 0.283
## C4 0.429 0.269 -0.172 -0.390 0.164
## C5 -0.270 -0.163 0.187 0.521
## C6 0.249 0.207 0.122 -0.191 -0.490 0.245
## C7 0.269 0.446
## C8 0.372 0.113 -0.230 -0.299
## C9 -0.218 -0.142 0.245 0.512
## C10 -0.222 0.105 0.280 0.360 0.139
## O1 -0.185 0.581 0.244 -0.404 0.138
## O2 0.263 -0.430 -0.200 0.259
## O3 0.246 0.468 0.228 -0.125 0.304 -0.203
## O4 0.185 -0.329 -0.215 0.163 0.287
## O5 -0.328 0.149 0.522 0.175 0.124 0.228 0.138
## O6 0.215 -0.174 -0.411 -0.186 0.100 -0.303 0.236 0.178
## O7 -0.278 0.391 0.207 0.109 0.149
## O8 0.116 0.600 0.171 -0.412 0.107 0.183
## O9 0.174 0.183 0.336
## O10 -0.288 0.223 0.573 0.194 0.270 -0.130
## Factor9 Factor10
## E1
## E2
## E3
## E4 0.107
## E5
## E6 0.113
## E7 0.117
## E8 0.130
## E9
## E10 0.103
## N1
## N2
## N3
## N4
## N5
## N6
## N7
## N8
## N9
## N10
## A1
## A2 0.259
## A3 0.114
## A4 -0.153
## A5 -0.110
## A6 -0.167
## A7 -0.256
## A8
## A9 -0.196
## A10
## C1 0.108
## C2 0.115
## C3 0.115
## C4
## C5
## C6
## C7
## C8
## C9
## C10
## O1
## O2 0.129
## O3 0.333
## O4
## O5 -0.262
## O6 -0.177
## O7 -0.143
## O8
## O9
## O10 -0.167
##
## Factor1 Factor2 Factor3 Factor4 Factor5 Factor6 Factor7
## SS loadings 7.400 4.126 3.097 3.033 2.390 1.001 0.853
## Proportion Var 0.148 0.083 0.062 0.061 0.048 0.020 0.017
## Cumulative Var 0.148 0.231 0.292 0.353 0.401 0.421 0.438
## Factor8 Factor9 Factor10
## SS loadings 0.713 0.431 0.421
## Proportion Var 0.014 0.009 0.008
## Cumulative Var 0.452 0.461 0.469
##
## Test of the hypothesis that 10 factors are sufficient.
## The chi square statistic is 21206.81 on 770 degrees of freedom.
## The p-value is 0
First, we can look at the sums of squared (SS) loadings; these are the eigenvalues, or the variance in all variables which is accounted for by that factor (i.e., the eigenvalue/# of variables = proportion variance). If a factor has a “high” SS loading (i.e., eigenvalue), then it is helping to explain the variances in the variables. In the factanal() output, the factors are ordered by their eigenvalues, with higher eigenvalues first.
A general rule-of-thumb called the Kaiser Rule, is that a factor is important/useful if its eigenvalue is greater than 1 (i.e., the average), Here, factors 1-6 appear to be important. There are other ways to choose the number of factors, we will look at later.
To illustrate how the eigenvalue is calculated.
#Calculate eigenvalue
loadings_fac1 = EFAresult1$loadings[,1] #loadings for first factor (1st column of Lambda)
loadings_fac1
## E1 E2 E3 E4 E5 E6
## -0.45325445 0.44467549 -0.66213951 0.53177773 -0.58989927 0.50084460
## E7 E8 E9 E10 N1 N2
## -0.56437000 0.31989101 -0.39714714 0.52490713 0.48889454 -0.39392659
## N3 N4 N5 N6 N7 N8
## 0.39327228 -0.29403882 0.43184868 0.53942838 0.57994036 0.62893349
## N9 N10 A1 A2 A3 A4
## 0.55922805 0.59119442 0.24157455 -0.44921521 0.27526202 -0.27595555
## A5 A6 A7 A8 A9 A10
## 0.33239541 -0.10808022 0.48893918 -0.32260320 -0.27245857 -0.46575645
## C1 C2 C3 C4 C5 C6
## -0.28101929 0.13474768 -0.17111198 0.42876764 -0.27023027 0.24934562
## C7 C8 C9 C10 O1 O2
## -0.09833812 0.37241442 -0.21750956 -0.22241830 -0.18543755 0.26289674
## O3 O4 O5 O6 O7 O8
## -0.06374849 0.18506071 -0.32784841 0.21460359 -0.27776040 -0.01354644
## O9 O10
## 0.03740136 -0.28769586
eigenv_fac1 = sum(loadings_fac1^2) #SS of factor loadings
eigenv_fac1
## [1] 7.400228
We can also look at the uniquenesses.
EFAresult1$uniquenesses
## E1 E2 E3 E4 E5 E6 E7
## 0.5152049 0.4801681 0.3960726 0.4319020 0.3941556 0.5159973 0.3967192
## E8 E9 E10 N1 N2 N3 N4
## 0.6634496 0.5983072 0.5158641 0.4335222 0.5769024 0.5188934 0.8061431
## N5 N6 N7 N8 N9 N10 A1
## 0.6603217 0.4256230 0.2950614 0.1675805 0.4679567 0.5294769 0.7335856
## A2 A3 A4 A5 A6 A7 A8
## 0.4932837 0.7018149 0.3283553 0.4943405 0.5620010 0.3675316 0.6337094
## A9 A10 C1 C2 C3 C4 C5
## 0.3936420 0.6449522 0.5977450 0.6007594 0.7518485 0.5164766 0.5718375
## C6 C7 C8 C9 C10 O1 O2
## 0.5266846 0.6908419 0.6821161 0.5893366 0.6994170 0.3562688 0.6018136
## O3 O4 O5 O6 O7 O8 O9
## 0.3945077 0.6899457 0.4040908 0.4957334 0.6628193 0.3671309 0.8150722
## O10
## 0.3778156
\(Uniqueness = 1 - Communality\) where Communality is the SS of all the factor loadings for a given variable. If all the factors jointly explain a large percent of variance in a given variable, that variable has high Communality (and thus low uniqueness).
To illustrate, lets calculate uniqueness for the variable E1
.
# Calculate communality
loadings_E1 = EFAresult1$loadings[1,] #loadings for first variable (1st row of Lambda)
loadings_E1
## Factor1 Factor2 Factor3 Factor4 Factor5
## -0.453254446 0.332730062 0.047301473 -0.360631214 0.095068753
## Factor6 Factor7 Factor8 Factor9 Factor10
## 0.060396148 0.120091807 0.007680495 -0.052817846 0.079983729
communality_E1 = sum(loadings_E1^2) #SS of factor loadings
communality_E1
## [1] 0.4847951
# Calculate uniqueness
uniqueness_E1 = 1-communality_E1
uniqueness_E1
## [1] 0.5152049
Our goal is to name the factors. Sometimes visualizations help. Plotting the factor loadings for the first two factors
#Plot loadings of the first 2 factors against one another
load = EFAresult1$loadings[,1:2]
plot(load, type="n") # set up plot
text(load,labels=names(dat_standard),cex=.7) # add variable names
Still difficult in this case.
It can be difficult to label factors when they are unrotated, since a description of one factor might overlap with a description of another factor. For instance, Factor 1 could be conceptualized as extraverted & open vs. conscientious & neurotic, and Factor 2 could be conceptualized as agreeable & neurotic vs. agreeable & neurotic. However, that is not conceptually clean.
We can rotate the factors to obtain more straightforward interpretations. Note that when the “best-fitting” factors are found, these factors are not unique. Any rotation of the best-fittng factors is also best-fitting. Lucky for us, fit is not compromised in the process of seeking easier interpretation.
Lots of ways to rotate. The default method in factanal()
is called varimax. Varimax rotation orthogonally rotates the factor axes with the goal of maximizing the variance of the squared loadings of a factor on all the variables in the factor matrix. In other words, varimax rotation looks for a rotation (i.e., a linear combination) of the original factors that maximizes the variance of the loadings (i.e., maximizing \(variance=\Sigma(l^2_{i,f}−mean(l^{2}))\) where \(l^2_{i,f}\) is the squared loadings of the ith variable on the fth factor, and \(mean(l^2)\) is the mean of the squared loadings). As a result, each variable tends to load more heavily on a single factor (and load very little on other factors), making the interpretation of a factor easier.
#Factor analysis with rotation
EFAresult2 = factanal(~ ., data=dat_standard, factors = 10, rotation = "varimax",
na.action = na.exclude)
EFAresult2
##
## Call:
## factanal(x = ~., factors = 10, data = dat_standard, na.action = na.exclude, rotation = "varimax")
##
## Uniquenesses:
## E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 N1 N2
## 0.515 0.480 0.396 0.432 0.394 0.516 0.397 0.663 0.598 0.516 0.434 0.577
## N3 N4 N5 N6 N7 N8 N9 N10 A1 A2 A3 A4
## 0.519 0.806 0.660 0.426 0.295 0.168 0.468 0.529 0.734 0.493 0.702 0.328
## A5 A6 A7 A8 A9 A10 C1 C2 C3 C4 C5 C6
## 0.494 0.562 0.368 0.634 0.394 0.645 0.598 0.601 0.752 0.516 0.572 0.527
## C7 C8 C9 C10 O1 O2 O3 O4 O5 O6 O7 O8
## 0.691 0.682 0.589 0.699 0.356 0.602 0.395 0.690 0.404 0.496 0.663 0.367
## O9 O10
## 0.815 0.378
##
## Loadings:
## Factor1 Factor2 Factor3 Factor4 Factor5 Factor6 Factor7 Factor8
## E1 0.660 0.169
## E2 -0.699 0.114
## E3 0.641 -0.271 0.245 0.138 0.128
## E4 -0.724 0.117 0.141
## E5 0.728 0.198 0.104
## E6 -0.598 -0.124 -0.116 0.256
## E7 0.728 -0.121 0.146 0.132
## E8 -0.563
## E9 0.602 0.125
## E10 -0.666 0.165
## N1 -0.101 0.732
## N2 -0.579 0.114 0.224
## N3 -0.135 0.645 0.148
## N4 0.125 -0.336 0.208
## N5 0.530 -0.137 0.152
## N6 0.731 -0.112
## N7 0.630 -0.161
## N8 0.665 -0.166
## N9 0.690 -0.158 0.103
## N10 -0.247 0.574 -0.171
## A1 -0.409 -0.108 0.244
## A2 0.333 0.509
## A3 0.226 -0.399 -0.205 0.102 0.118
## A4 0.810
## A5 -0.152 -0.634 0.208
## A6 0.138 0.613 0.124
## A7 -0.320 -0.584 0.205
## A8 0.127 0.571
## A9 0.121 0.739
## A10 0.333 -0.155 0.392 0.144 0.135 0.144
## C1 -0.104 0.591 0.143
## C2 -0.561 0.121 0.149 0.131
## C3 0.399 0.148 0.119 0.175
## C4 0.327 -0.574 0.153
## C5 0.619 0.100
## C6 0.144 -0.625 0.153 0.161
## C7 0.531
## C8 0.176 -0.137 -0.482 0.124
## C9 0.613 0.114
## C10 0.451 0.137 0.257
## O1 0.770 0.142 0.112
## O2 0.206 -0.327 -0.237 -0.208 0.380
## O3 0.171 0.739 0.119
## O4 0.111 -0.233 -0.274 -0.145 0.368
## O5 0.196 0.147 0.202 0.282 0.637
## O6 -0.112 -0.659 -0.149 0.147
## O7 -0.167 0.182 0.336 0.101 0.372
## O8 0.772 0.101
## O9 -0.127 0.156 0.175 0.235 0.182 0.141
## O10 0.184 0.200 0.448 0.579
## Factor9 Factor10
## E1
## E2
## E3 0.149
## E4
## E5 0.101
## E6
## E7 0.118
## E8
## E9
## E10
## N1 -0.101
## N2
## N3 -0.101
## N4
## N5
## N6
## N7 0.525
## N8 0.597
## N9
## N10 0.197
## A1 0.123
## A2 0.355
## A3 0.105
## A4
## A5 -0.190
## A6 -0.132
## A7 -0.364
## A8 0.101
## A9 -0.141
## A10
## C1
## C2 0.135
## C3 0.102
## C4 0.100
## C5
## C6
## C7
## C8 0.115
## C9
## C10
## O1
## O2
## O3
## O4
## O5
## O6
## O7
## O8
## O9
## O10
##
## Factor1 Factor2 Factor3 Factor4 Factor5 Factor6 Factor7
## SS loadings 5.062 4.452 3.706 3.340 1.791 1.530 1.288
## Proportion Var 0.101 0.089 0.074 0.067 0.036 0.031 0.026
## Cumulative Var 0.101 0.190 0.264 0.331 0.367 0.398 0.423
## Factor8 Factor9 Factor10
## SS loadings 0.970 0.798 0.528
## Proportion Var 0.019 0.016 0.011
## Cumulative Var 0.443 0.459 0.469
##
## Test of the hypothesis that 10 factors are sufficient.
## The chi square statistic is 21206.81 on 770 degrees of freedom.
## The p-value is 0
And lets plot the new loadings for the first two factors.
#Plot loadings of the first 2 factors against one another
load = EFAresult2$loadings[,1:2]
plot(load, type="n") # set up plot
text(load,labels=names(dat_standard),cex=.7) # add variable names
Now the variales are organized for easier interpretation. Here we can see that now all the E variables load heavily on Factor 1, but have very low loadings on Factor 2. In the vertical direction, we see that the N variable variables load heavily on Factor 2 but less so on Factor 1.
As a result, we can define or label the factors using those terms, e.g., Factor 1 might be labeled extraversion, and Factor 2 might be labeled neuroticism (labels are chosen so that higher scores are more of that construct, in this case have to look at the items).
Lets check that indeed the model is as expected. Recall that … \[ \boldsymbol{\Sigma} = \boldsymbol{\Lambda}\boldsymbol{\Psi}\boldsymbol{\Lambda}' + \boldsymbol{\Theta} \] We can pull all of the matrices from the data (to get sigma), the factanal output (for lambda, theta), or assumptions of the model fitting process (to get psi).
sigma <- cor(dat_standard, use="complete.obs")
sigma
## E1 E2 E3 E4 E5
## E1 1.000000000 -0.421332050 0.474122844 -0.484197392 0.478953950
## E2 -0.421332050 1.000000000 -0.445967874 0.527596515 -0.539961352
## E3 0.474122844 -0.445967874 1.000000000 -0.481541735 0.590506638
## E4 -0.484197392 0.527596515 -0.481541735 1.000000000 -0.510597333
## E5 0.478953950 -0.539961352 0.590506638 -0.510597333 1.000000000
## E6 -0.346964124 0.570728872 -0.393804086 0.474796516 -0.481078590
## E7 0.588010559 -0.480247660 0.579773192 -0.503626412 0.630702775
## E8 -0.366930453 0.373305557 -0.320590041 0.446027775 -0.345126387
## E9 0.455345287 -0.365035478 0.423297190 -0.451176450 0.415973451
## E10 -0.414706073 0.463489869 -0.474495305 0.510301070 -0.542964733
## N1 -0.113951661 0.060558909 -0.235010442 0.154510643 -0.126414221
## N2 0.151135209 -0.029538701 0.281527289 -0.089374445 0.132553623
## N3 -0.119966605 0.057612457 -0.198892132 0.180292758 -0.094819549
## N4 0.135115174 -0.065851012 0.199702686 -0.114574607 0.115243882
## N5 -0.071326981 0.043865272 -0.183592488 0.128004302 -0.102082932
## N6 -0.102090404 0.041691152 -0.221480955 0.153964589 -0.119753015
## N7 -0.046212222 0.037520024 -0.210640267 0.138147325 -0.102552984
## N8 -0.055124444 0.053141489 -0.234429845 0.145008111 -0.121368243
## N9 -0.092343774 0.045854168 -0.251788702 0.148802651 -0.142114000
## N10 -0.194513383 0.188592385 -0.361071322 0.276977933 -0.240822700
## A1 -0.015434108 0.122908815 -0.116114118 0.114849263 -0.105062827
## A2 0.271922976 -0.273774390 0.425246804 -0.252476077 0.382926499
## A3 0.045047460 -0.037431117 -0.124588960 0.020240305 -0.037077433
## A4 0.086767977 -0.111554106 0.220448017 -0.056280855 0.194190369
## A5 -0.108175469 0.206724837 -0.239657102 0.158505507 -0.237087638
## A6 0.062027550 -0.058998513 0.122285209 -0.006194314 0.105602215
## A7 -0.225928921 0.300353598 -0.397239812 0.284441999 -0.356148506
## A8 0.149260989 -0.150449317 0.258018719 -0.113303687 0.244458541
## A9 0.140243073 -0.141552868 0.221204744 -0.104347424 0.226889798
## A10 0.314900037 -0.245469134 0.398293609 -0.245382216 0.391539281
## C1 0.054785399 -0.011772459 0.162452147 -0.050911686 0.111404231
## C2 0.036182970 -0.045991698 -0.034048665 0.019181138 0.008695425
## C3 0.011542252 0.024277829 0.072974997 0.024632181 0.066697443
## C4 -0.057234355 0.043898618 -0.213917037 0.161485877 -0.128537247
## C5 0.084955172 -0.023141122 0.173627213 -0.067100332 0.145572921
## C6 -0.010737659 -0.007050829 -0.095916953 0.058200767 -0.054994088
## C7 -0.031664689 0.022642981 0.028294457 0.029937386 0.027939095
## C8 -0.041535468 0.076231628 -0.181975309 0.129959204 -0.142477727
## C9 0.047188258 -0.031956849 0.145955981 -0.050969928 0.125139438
## C10 0.049017092 -0.020401336 0.111776301 -0.023388766 0.101918081
## O1 0.040272053 -0.055218322 0.031111826 -0.045260939 0.089852064
## O2 -0.025472354 0.057515149 -0.067281482 0.096859554 -0.070091821
## O3 0.071761285 -0.041844977 -0.002509103 0.026786701 0.060817443
## O4 -0.005280127 0.035192004 -0.021722821 0.060609255 -0.052450832
## O5 0.184961305 -0.128952873 0.163888788 -0.144305500 0.203171304
## O6 -0.094801032 0.104338992 -0.078249530 0.089785289 -0.108058018
## O7 0.082478559 -0.057522666 0.137607098 -0.073675461 0.123398331
## O8 0.004925744 -0.021139541 -0.073620477 0.005511235 0.014648611
## O9 -0.081113200 0.065800627 -0.088787720 0.109800662 -0.025922995
## O10 0.163392958 -0.140846382 0.121376841 -0.129292330 0.196063694
## E6 E7 E8 E9 E10
## E1 -0.34696412 0.588010559 -0.3669304534 0.4553452870 -0.414706073
## E2 0.57072887 -0.480247660 0.3733055571 -0.3650354776 0.463489869
## E3 -0.39380409 0.579773192 -0.3205900412 0.4232971900 -0.474495305
## E4 0.47479652 -0.503626412 0.4460277750 -0.4511764498 0.510301070
## E5 -0.48107859 0.630702775 -0.3451263869 0.4159734507 -0.542964733
## E6 1.00000000 -0.405757964 0.3201932846 -0.3304710067 0.411851159
## E7 -0.40575796 1.000000000 -0.3451934390 0.4331032171 -0.533574500
## E8 0.32019328 -0.345193439 1.0000000000 -0.5147705535 0.380709268
## E9 -0.33047101 0.433103217 -0.5147705535 1.0000000000 -0.371866392
## E10 0.41185116 -0.533574500 0.3807092679 -0.3718663921 1.000000000
## N1 0.10721619 -0.140737199 0.0888159799 -0.1290780659 0.180753025
## N2 -0.05112205 0.155586903 -0.0515165061 0.1354895155 -0.093020370
## N3 0.08803358 -0.132130669 0.1119057682 -0.1119247419 0.199782749
## N4 -0.05285323 0.130321864 -0.0826436702 0.1195871679 -0.113411060
## N5 0.13813311 -0.109574021 0.0421857055 -0.0614245171 0.149259828
## N6 0.12771888 -0.143032334 0.0538386103 -0.0837609651 0.177669239
## N7 0.11193015 -0.092842129 0.0209988486 -0.0261342073 0.161698201
## N8 0.12090918 -0.113732990 0.0209483158 -0.0442917677 0.156882692
## N9 0.12154530 -0.147029385 0.0689268056 -0.0744139686 0.203749042
## N10 0.20201940 -0.241220927 0.1328205984 -0.1549157793 0.248494414
## A1 0.18690890 -0.081154751 -0.0122780146 0.0178965364 0.084839260
## A2 -0.29156642 0.356934961 -0.1722717624 0.2212747983 -0.236202423
## A3 0.01133106 -0.021247583 -0.0444530626 0.0603328734 0.053241213
## A4 -0.12338108 0.146139365 -0.0099603839 0.0445792494 -0.066398820
## A5 0.23330084 -0.179211398 0.0795844439 -0.0718747173 0.146121212
## A6 -0.01518749 0.080021444 0.0118828599 0.0055957910 0.004313070
## A7 0.33645754 -0.352594087 0.1677833016 -0.1698026775 0.253757619
## A8 -0.16590607 0.210845232 0.0027853708 0.0664074498 -0.108696926
## A9 -0.15240044 0.178828386 -0.0603485034 0.1238282736 -0.095497046
## A10 -0.24745964 0.352810323 -0.1400698373 0.2304187328 -0.244512343
## C1 -0.06397127 0.067925102 0.0087605282 0.0382823232 -0.054636695
## C2 -0.01563111 0.022439019 -0.0572400208 0.0491551219 0.015756135
## C3 -0.05183145 0.033392223 0.0562356685 -0.0001718251 0.012828766
## C4 0.11795726 -0.089067877 0.0303195024 -0.0437832399 0.134635474
## C5 -0.02267554 0.127294276 -0.0188425013 0.0505368241 -0.085062121
## C6 0.06310324 -0.039605189 -0.0073640903 0.0128333228 0.080255189
## C7 -0.01802860 -0.002246308 0.0819776625 -0.0210361536 0.035961514
## C8 0.13839389 -0.101768110 0.0282861065 -0.0242885860 0.126423130
## C9 -0.03754292 0.083699866 -0.0006181908 0.0369540099 -0.034269349
## C10 -0.08130839 0.067154679 0.0025371964 0.0645873683 -0.019190320
## O1 -0.17974286 0.056266750 -0.0251033586 0.0700464039 -0.066505859
## O2 0.18677708 -0.055346284 0.0455796593 -0.0778442624 0.103789214
## O3 -0.09306585 0.040733665 -0.0407260023 0.0873667363 -0.008828102
## O4 0.15355295 -0.035439081 0.0389979556 -0.0493286919 0.057077824
## O5 -0.23190781 0.163968676 -0.1302515957 0.2192609296 -0.141464113
## O6 0.19354983 -0.091714172 0.0979045165 -0.1190485050 0.085279534
## O7 -0.15414021 0.101124709 -0.0201984735 0.1241614502 -0.089499520
## O8 -0.10983907 0.011853671 -0.0124164787 0.0511997586 -0.008108788
## O9 -0.01514834 -0.053663616 0.0830236699 -0.0380834999 0.112695426
## O10 -0.25770782 0.164489088 -0.1172685180 0.1997084593 -0.132085604
## N1 N2 N3 N4 N5
## E1 -0.1139516614 1.511352e-01 -0.119966605 0.135115174 -0.07132698
## E2 0.0605589085 -2.953870e-02 0.057612457 -0.065851012 0.04386527
## E3 -0.2350104420 2.815273e-01 -0.198892132 0.199702686 -0.18359249
## E4 0.1545106432 -8.937444e-02 0.180292758 -0.114574607 0.12800430
## E5 -0.1264142209 1.325536e-01 -0.094819549 0.115243882 -0.10208293
## E6 0.1072161942 -5.112205e-02 0.088033585 -0.052853233 0.13813311
## E7 -0.1407371992 1.555869e-01 -0.132130669 0.130321864 -0.10957402
## E8 0.0888159799 -5.151651e-02 0.111905768 -0.082643670 0.04218571
## E9 -0.1290780659 1.354895e-01 -0.111924742 0.119587168 -0.06142452
## E10 0.1807530249 -9.302037e-02 0.199782749 -0.113411060 0.14925983
## N1 1.0000000000 -4.646773e-01 0.553534025 -0.250989354 0.38959062
## N2 -0.4646772994 1.000000e+00 -0.396494015 0.263473005 -0.25837017
## N3 0.5535340254 -3.964940e-01 1.000000000 -0.251204884 0.31887772
## N4 -0.2509893540 2.634730e-01 -0.251204884 1.000000000 -0.13004570
## N5 0.3895906211 -2.583702e-01 0.318877723 -0.130045698 1.00000000
## N6 0.5351418971 -3.826889e-01 0.447031178 -0.211808334 0.47999563
## N7 0.4154065283 -2.949422e-01 0.355789430 -0.238041069 0.37070764
## N8 0.4336132224 -3.269564e-01 0.354108842 -0.250249655 0.39220632
## N9 0.4857225283 -3.396155e-01 0.383680791 -0.196184322 0.43232150
## N10 0.4217061092 -3.584273e-01 0.393080923 -0.393208019 0.31366407
## A1 -0.0008890883 2.268715e-02 -0.018016227 0.061695571 0.07651744
## A2 -0.0452535337 1.159194e-01 0.014837557 0.043588924 -0.07135045
## A3 0.1103327671 -6.134572e-02 0.079405307 -0.064909206 0.12553427
## A4 0.0653936259 1.859291e-02 0.141808019 0.005741134 0.01428918
## A5 -0.0042066161 5.555009e-03 -0.070715702 0.018293187 0.06127630
## A6 0.1355001737 -1.303871e-02 0.182878550 -0.010260679 0.11260601
## A7 0.0492773204 -5.086840e-02 -0.007041342 -0.013571994 0.10674782
## A8 -0.0125575663 7.116551e-02 0.063663728 0.029815256 -0.06196595
## A9 0.0604873843 -4.172108e-05 0.135685107 -0.004461244 0.02885344
## A10 -0.1350496864 1.737023e-01 -0.068933821 0.131262922 -0.10266439
## C1 -0.0848873170 8.456031e-02 -0.048820728 0.101481066 -0.15490991
## C2 0.0907545146 3.062288e-02 0.056981415 -0.051113829 0.09461437
## C3 -0.0242940872 3.970403e-02 0.097697276 0.021353859 -0.09808496
## C4 0.2613087231 -1.398266e-01 0.212940618 -0.134014077 0.26433927
## C5 -0.0984737886 4.625941e-02 -0.055639436 0.151224397 -0.10348980
## C6 0.1305898042 -1.569819e-02 0.095530451 -0.052934348 0.17051577
## C7 0.0482479633 -3.546433e-02 0.095586938 0.022670723 -0.01252093
## C8 0.1411663256 -3.917807e-02 0.102775594 -0.092282472 0.19107670
## C9 0.0068305576 -1.832232e-02 0.055191680 0.080843110 -0.07453977
## C10 -0.0489086257 2.909879e-02 0.012392057 0.063662414 -0.08522454
## O1 -0.0456112592 3.860312e-02 -0.047223880 -0.024647197 -0.11624746
## O2 0.1736815809 -7.578936e-02 0.139503855 0.011392883 0.21284280
## O3 0.0332014778 3.131265e-02 0.080795175 -0.032578689 0.01409154
## O4 0.0874191745 -3.849192e-02 0.054207111 0.055255129 0.12685188
## O5 -0.1281136824 1.329656e-01 -0.094129875 0.080498894 -0.08520357
## O6 0.0733718534 -7.076460e-02 0.037541740 0.007725755 0.08523228
## O7 -0.1744119017 1.381498e-01 -0.106412237 0.071078934 -0.15753532
## O8 0.0219782163 -2.032686e-02 0.015003441 -0.063040031 -0.03258941
## O9 0.1118983513 -5.848762e-02 0.177260586 -0.071480228 0.05220014
## O10 -0.0898931408 9.497340e-02 -0.056607451 0.039622411 -0.09066379
## N6 N7 N8 N9 N10
## E1 -0.102090404 -0.04621222 -0.05512444 -0.092343774 -0.194513383
## E2 0.041691152 0.03752002 0.05314149 0.045854168 0.188592385
## E3 -0.221480955 -0.21064027 -0.23442984 -0.251788702 -0.361071322
## E4 0.153964589 0.13814732 0.14500811 0.148802651 0.276977933
## E5 -0.119753015 -0.10255298 -0.12136824 -0.142114000 -0.240822700
## E6 0.127718885 0.11193015 0.12090918 0.121545299 0.202019397
## E7 -0.143032334 -0.09284213 -0.11373299 -0.147029385 -0.241220927
## E8 0.053838610 0.02099885 0.02094832 0.068926806 0.132820598
## E9 -0.083760965 -0.02613421 -0.04429177 -0.074413969 -0.154915779
## E10 0.177669239 0.16169820 0.15688269 0.203749042 0.248494414
## N1 0.535141897 0.41540653 0.43361322 0.485722528 0.421706109
## N2 -0.382688910 -0.29494215 -0.32695641 -0.339615544 -0.358427343
## N3 0.447031178 0.35578943 0.35410884 0.383680791 0.393080923
## N4 -0.211808334 -0.23804107 -0.25024965 -0.196184322 -0.393208019
## N5 0.479995633 0.37070764 0.39220632 0.432321502 0.313664070
## N6 1.000000000 0.50675735 0.53995435 0.602915226 0.449473621
## N7 0.506757351 1.00000000 0.76802652 0.503533770 0.480027032
## N8 0.539954345 0.76802652 1.00000000 0.528216636 0.541434896
## N9 0.602915226 0.50353377 0.52821664 1.000000000 0.413917580
## N10 0.449473621 0.48002703 0.54143490 0.413917580 1.000000000
## A1 0.048473954 0.10987794 0.12268709 0.112921064 0.079400848
## A2 -0.075607947 -0.07308486 -0.09522488 -0.154062864 -0.138866998
## A3 0.158385667 0.21814351 0.20980857 0.311096670 0.155711789
## A4 0.057218939 -0.01746744 -0.02028971 -0.093663033 -0.015963120
## A5 0.013282685 0.06117459 0.06390833 0.124519376 0.062187309
## A6 0.175531434 0.05628123 0.05957702 -0.009611604 0.046019908
## A7 0.081259790 0.12632488 0.14464417 0.193183120 0.166779412
## A8 -0.026283377 -0.06014263 -0.07425114 -0.127407595 -0.082478468
## A9 0.080704764 0.02204906 0.02963950 -0.047728528 0.011200083
## A10 -0.125051965 -0.12146654 -0.13723801 -0.187528126 -0.187967649
## C1 -0.144929070 -0.16340524 -0.16849968 -0.118418644 -0.183933686
## C2 0.110001224 0.13172581 0.11944595 0.091863229 0.110313580
## C3 -0.071201520 -0.06466864 -0.07652301 -0.043016845 -0.048544278
## C4 0.303281871 0.32720180 0.34566672 0.281544176 0.337953477
## C5 -0.096712885 -0.13721054 -0.13106432 -0.131366243 -0.171970365
## C6 0.195028448 0.19070583 0.18543078 0.149601640 0.158532853
## C7 -0.010052823 -0.04479362 -0.06996324 0.028092632 -0.055222444
## C8 0.194569823 0.25059368 0.27958246 0.197178284 0.239823896
## C9 -0.046480862 -0.10987426 -0.11341363 -0.025915985 -0.126869687
## C10 -0.072445911 -0.09318297 -0.10178409 -0.043362105 -0.088777444
## O1 -0.092074787 -0.08619826 -0.08192127 -0.045480307 -0.004863839
## O2 0.199674123 0.13780561 0.14660959 0.169820876 0.086351421
## O3 0.036165869 0.08429730 0.06980808 0.035463011 0.074915505
## O4 0.118096966 0.06904564 0.08498748 0.118649423 0.013835282
## O5 -0.109632763 -0.07813429 -0.08766212 -0.071049822 -0.122980209
## O6 0.073422737 0.02297969 0.03471382 0.076323965 0.057780733
## O7 -0.153748485 -0.09664680 -0.11346619 -0.107871115 -0.108476307
## O8 -0.008577145 0.05696722 0.06158198 0.061323512 0.099089378
## O9 0.089475126 0.07609092 0.07150626 0.089449297 0.167901596
## O10 -0.082507878 -0.03027376 -0.04409918 -0.058721353 -0.047208847
## A1 A2 A3 A4 A5
## E1 -0.0154341081 2.719230e-01 0.04504746 0.086767977 -0.108175469
## E2 0.1229088146 -2.737744e-01 -0.03743112 -0.111554106 0.206724837
## E3 -0.1161141184 4.252468e-01 -0.12458896 0.220448017 -0.239657102
## E4 0.1148492627 -2.524761e-01 0.02024031 -0.056280855 0.158505507
## E5 -0.1050628268 3.829265e-01 -0.03707743 0.194190369 -0.237087638
## E6 0.1869089035 -2.915664e-01 0.01133106 -0.123381085 0.233300840
## E7 -0.0811547510 3.569350e-01 -0.02124758 0.146139365 -0.179211398
## E8 -0.0122780146 -1.722718e-01 -0.04445306 -0.009960384 0.079584444
## E9 0.0178965364 2.212748e-01 0.06033287 0.044579249 -0.071874717
## E10 0.0848392598 -2.362024e-01 0.05324121 -0.066398820 0.146121212
## N1 -0.0008890883 -4.525353e-02 0.11033277 0.065393626 -0.004206616
## N2 0.0226871522 1.159194e-01 -0.06134572 0.018592913 0.005555009
## N3 -0.0180162269 1.483756e-02 0.07940531 0.141808019 -0.070715702
## N4 0.0616955705 4.358892e-02 -0.06490921 0.005741134 0.018293187
## N5 0.0765174433 -7.135045e-02 0.12553427 0.014289180 0.061276298
## N6 0.0484739541 -7.560795e-02 0.15838567 0.057218939 0.013282685
## N7 0.1098779391 -7.308486e-02 0.21814351 -0.017467436 0.061174591
## N8 0.1226870881 -9.522488e-02 0.20980857 -0.020289713 0.063908329
## N9 0.1129210645 -1.540629e-01 0.31109667 -0.093663033 0.124519376
## N10 0.0794008485 -1.388670e-01 0.15571179 -0.015963120 0.062187309
## A1 1.0000000000 -2.309679e-01 0.18930371 -0.331550922 0.339363505
## A2 -0.2309678792 1.000000e+00 -0.14986430 0.398713310 -0.418821762
## A3 0.1893037132 -1.498643e-01 1.00000000 -0.307378184 0.237601259
## A4 -0.3315509219 3.987133e-01 -0.30737818 1.000000000 -0.503091619
## A5 0.3393635046 -4.188218e-01 0.23760126 -0.503091619 1.000000000
## A6 -0.2115761064 2.529969e-01 -0.27089874 0.508659948 -0.324887098
## A7 0.3450633586 -5.744216e-01 0.24010952 -0.438008291 0.564417153
## A8 -0.2626780005 3.613309e-01 -0.19894869 0.456027484 -0.407269976
## A9 -0.2539124134 3.766339e-01 -0.24511929 0.648930491 -0.447338395
## A10 -0.1263403089 3.234225e-01 -0.21765575 0.322978199 -0.246484863
## C1 -0.0278491011 6.739869e-02 -0.11754837 0.037823372 -0.030571215
## C2 -0.0091691943 6.725398e-02 0.15326620 0.022490935 -0.015859016
## C3 -0.0230392087 8.547002e-02 -0.06456788 0.089499961 -0.050199095
## C4 0.0833310331 -4.859185e-02 0.26990267 -0.026340035 0.044130935
## C5 0.0156673009 5.569836e-02 -0.18236714 0.085553869 -0.046792314
## C6 0.0506150091 2.800457e-05 0.16501403 -0.010927887 0.023753229
## C7 -0.0711282861 1.939126e-02 -0.05244591 0.052925918 -0.010657873
## C8 0.1655414220 -1.077869e-01 0.22581350 -0.109307903 0.138430145
## C9 -0.0541220073 8.034734e-02 -0.11997799 0.101495218 -0.068542037
## C10 -0.0327002326 7.589708e-02 -0.10006350 0.074664918 -0.037756551
## O1 -0.1051777270 7.490945e-02 0.04215245 -0.006241288 -0.013194513
## O2 0.1172404010 -5.489689e-02 0.04949887 -0.011347166 0.060247401
## O3 -0.0175074543 8.415352e-02 0.06686539 0.071639445 -0.025898470
## O4 0.1196111824 -1.095028e-01 0.05475254 -0.065798358 0.123361074
## O5 -0.0224970554 1.098748e-01 0.02274156 0.026387313 -0.014555885
## O6 0.0540743588 -9.796803e-02 0.03629391 -0.064932440 0.078905004
## O7 -0.0118966238 7.514290e-02 -0.03546737 0.026091757 -0.017644205
## O8 -0.0513065090 -7.637847e-03 0.15754809 -0.067638002 0.042850306
## O9 -0.1066788355 8.657693e-02 -0.01475701 0.144349848 -0.079361030
## O10 -0.0395729058 1.366316e-01 0.04220674 0.044222998 -0.048982458
## A6 A7 A8 A9 A10
## E1 0.0620275504 -0.225928921 0.149260989 1.402431e-01 0.31490004
## E2 -0.0589985127 0.300353598 -0.150449317 -1.415529e-01 -0.24546913
## E3 0.1222852085 -0.397239812 0.258018719 2.212047e-01 0.39829361
## E4 -0.0061943138 0.284441999 -0.113303687 -1.043474e-01 -0.24538222
## E5 0.1056022154 -0.356148506 0.244458541 2.268898e-01 0.39153928
## E6 -0.0151874888 0.336457538 -0.165906068 -1.524004e-01 -0.24745964
## E7 0.0800214442 -0.352594087 0.210845232 1.788284e-01 0.35281032
## E8 0.0118828599 0.167783302 0.002785371 -6.034850e-02 -0.14006984
## E9 0.0055957910 -0.169802678 0.066407450 1.238283e-01 0.23041873
## E10 0.0043130703 0.253757619 -0.108696926 -9.549705e-02 -0.24451234
## N1 0.1355001737 0.049277320 -0.012557566 6.048738e-02 -0.13504969
## N2 -0.0130387071 -0.050868400 0.071165508 -4.172108e-05 0.17370234
## N3 0.1828785500 -0.007041342 0.063663728 1.356851e-01 -0.06893382
## N4 -0.0102606786 -0.013571994 0.029815256 -4.461244e-03 0.13126292
## N5 0.1126060112 0.106747823 -0.061965948 2.885344e-02 -0.10266439
## N6 0.1755314342 0.081259790 -0.026283377 8.070476e-02 -0.12505197
## N7 0.0562812326 0.126324876 -0.060142629 2.204906e-02 -0.12146654
## N8 0.0595770184 0.144644174 -0.074251140 2.963950e-02 -0.13723801
## N9 -0.0096116042 0.193183120 -0.127407595 -4.772853e-02 -0.18752813
## N10 0.0460199081 0.166779412 -0.082478468 1.120008e-02 -0.18796765
## A1 -0.2115761064 0.345063359 -0.262678001 -2.539124e-01 -0.12634031
## A2 0.2529968782 -0.574421644 0.361330883 3.766339e-01 0.32342249
## A3 -0.2708987396 0.240109517 -0.198948690 -2.451193e-01 -0.21765575
## A4 0.5086599482 -0.438008291 0.456027484 6.489305e-01 0.32297820
## A5 -0.3248870984 0.564417153 -0.407269976 -4.473384e-01 -0.24648486
## A6 1.0000000000 -0.284521722 0.353459288 4.823027e-01 0.25866630
## A7 -0.2845217219 1.000000000 -0.387230512 -3.965638e-01 -0.30138915
## A8 0.3534592876 -0.387230512 1.000000000 4.298821e-01 0.32892238
## A9 0.4823026670 -0.396563761 0.429882081 1.000000e+00 0.34828311
## A10 0.2586662979 -0.301389149 0.328922379 3.482831e-01 1.00000000
## C1 -0.0033219055 -0.047684911 0.089008369 4.740521e-02 0.10651440
## C2 0.0216965025 -0.010594013 -0.002824000 1.070525e-02 -0.02805134
## C3 0.0328383175 -0.063217099 0.117114417 1.121896e-01 0.11722941
## C4 -0.0027364981 0.099566789 -0.063042039 -3.975432e-02 -0.16696416
## C5 0.0817614796 -0.058465145 0.109466482 1.091331e-01 0.16658661
## C6 0.0293990047 0.043998158 -0.036724550 -1.211277e-02 -0.07550166
## C7 0.0357799408 -0.018526583 0.066045110 3.542396e-02 0.05433777
## C8 -0.0602689770 0.167434752 -0.139705843 -9.972343e-02 -0.16450696
## C9 0.0733752746 -0.078093916 0.119966692 1.292503e-01 0.12473544
## C10 0.0430641802 -0.051490830 0.096440435 9.515950e-02 0.18694717
## O1 -0.0846257880 -0.041739671 0.016673073 9.363771e-05 0.04538956
## O2 0.0792368277 0.082851834 -0.022733358 -2.916518e-02 -0.05478836
## O3 0.0401926741 -0.042578506 0.041130536 1.003198e-01 0.07847838
## O4 0.0103377336 0.133631980 -0.052610724 -6.867928e-02 -0.03957324
## O5 0.0002254744 -0.066590154 0.063851454 8.077451e-02 0.19817183
## O6 -0.0242986833 0.133184330 -0.056278248 -9.854294e-02 -0.11304253
## O7 -0.0357469101 -0.042754525 0.073032356 6.538430e-02 0.15750753
## O8 -0.1129561031 0.041288647 -0.026188939 -3.976315e-02 -0.03429577
## O9 0.1006576656 -0.056687439 0.111984053 1.481541e-01 0.05064856
## O10 0.0062598273 -0.095938962 0.081469550 1.030149e-01 0.17354936
## C1 C2 C3 C4 C5
## E1 0.054785399 0.036182970 0.0115422524 -0.057234355 0.08495517
## E2 -0.011772459 -0.045991698 0.0242778295 0.043898618 -0.02314112
## E3 0.162452147 -0.034048665 0.0729749969 -0.213917037 0.17362721
## E4 -0.050911686 0.019181138 0.0246321805 0.161485877 -0.06710033
## E5 0.111404231 0.008695425 0.0666974432 -0.128537247 0.14557292
## E6 -0.063971273 -0.015631112 -0.0518314488 0.117957260 -0.02267554
## E7 0.067925102 0.022439019 0.0333922235 -0.089067877 0.12729428
## E8 0.008760528 -0.057240021 0.0562356685 0.030319502 -0.01884250
## E9 0.038282323 0.049155122 -0.0001718251 -0.043783240 0.05053682
## E10 -0.054636695 0.015756135 0.0128287659 0.134635474 -0.08506212
## N1 -0.084887317 0.090754515 -0.0242940872 0.261308723 -0.09847379
## N2 0.084560314 0.030622877 0.0397040257 -0.139826566 0.04625941
## N3 -0.048820728 0.056981415 0.0976972765 0.212940618 -0.05563944
## N4 0.101481066 -0.051113829 0.0213538586 -0.134014077 0.15122440
## N5 -0.154909908 0.094614371 -0.0980849610 0.264339267 -0.10348980
## N6 -0.144929070 0.110001224 -0.0712015199 0.303281871 -0.09671289
## N7 -0.163405238 0.131725813 -0.0646686396 0.327201797 -0.13721054
## N8 -0.168499680 0.119445955 -0.0765230098 0.345666721 -0.13106432
## N9 -0.118418644 0.091863229 -0.0430168452 0.281544176 -0.13136624
## N10 -0.183933686 0.110313580 -0.0485442781 0.337953477 -0.17197037
## A1 -0.027849101 -0.009169194 -0.0230392087 0.083331033 0.01566730
## A2 0.067398685 0.067253979 0.0854700248 -0.048591850 0.05569836
## A3 -0.117548372 0.153266202 -0.0645678832 0.269902668 -0.18236714
## A4 0.037823372 0.022490935 0.0894999610 -0.026340035 0.08555387
## A5 -0.030571215 -0.015859016 -0.0501990945 0.044130935 -0.04679231
## A6 -0.003321906 0.021696502 0.0328383175 -0.002736498 0.08176148
## A7 -0.047684911 -0.010594013 -0.0632170991 0.099566789 -0.05846515
## A8 0.089008369 -0.002824000 0.1171144167 -0.063042039 0.10946648
## A9 0.047405211 0.010705249 0.1121896351 -0.039754325 0.10913307
## A10 0.106514402 -0.028051336 0.1172294137 -0.166964165 0.16658661
## C1 1.000000000 -0.260101982 0.2998418200 -0.348249839 0.38927344
## C2 -0.260101982 1.000000000 -0.1583582270 0.397591265 -0.35929748
## C3 0.299841820 -0.158358227 1.0000000000 -0.192613501 0.19948536
## C4 -0.348249839 0.397591265 -0.1926135010 1.000000000 -0.36069549
## C5 0.389273442 -0.359297482 0.1994853645 -0.360695490 1.00000000
## C6 -0.310458834 0.510228008 -0.2108306625 0.458626221 -0.38613494
## C7 0.309466955 -0.259465724 0.2494839721 -0.255198401 0.29191522
## C8 -0.317420429 0.234731332 -0.1676992121 0.389419081 -0.36577182
## C9 0.426953557 -0.265291029 0.2328662870 -0.308447674 0.42404719
## C10 0.330269966 -0.143739054 0.3378715233 -0.234082393 0.27582821
## O1 0.129099156 0.069322859 0.1502654050 -0.029885742 -0.03465213
## O2 -0.071161835 0.002978895 -0.1270633542 0.111623476 0.02529148
## O3 -0.012502672 0.094639775 0.1190112060 0.094213900 -0.06602053
## O4 -0.003185954 -0.040718948 -0.0911081266 0.038346088 0.04921620
## O5 0.200035609 0.006571500 0.1984007469 -0.129143292 0.08635175
## O6 -0.019218294 -0.024031350 -0.1039597751 0.044408232 0.02923634
## O7 0.216199784 -0.009468890 0.2394076511 -0.154962739 0.10490983
## O8 0.041781394 0.114068341 0.1002200792 0.085985373 -0.10252792
## O9 0.027067921 0.050731868 0.1351689418 0.050322704 -0.03809029
## O10 0.108975762 0.059534386 0.1771440212 -0.022950025 0.02023949
## C6 C7 C8 C9 C10
## E1 -1.073766e-02 -0.031664689 -0.04153547 0.0471882577 0.049017092
## E2 -7.050829e-03 0.022642981 0.07623163 -0.0319568492 -0.020401336
## E3 -9.591695e-02 0.028294457 -0.18197531 0.1459559814 0.111776301
## E4 5.820077e-02 0.029937386 0.12995920 -0.0509699281 -0.023388766
## E5 -5.499409e-02 0.027939095 -0.14247773 0.1251394380 0.101918081
## E6 6.310324e-02 -0.018028604 0.13839389 -0.0375429189 -0.081308389
## E7 -3.960519e-02 -0.002246308 -0.10176811 0.0836998664 0.067154679
## E8 -7.364090e-03 0.081977662 0.02828611 -0.0006181908 0.002537196
## E9 1.283332e-02 -0.021036154 -0.02428859 0.0369540099 0.064587368
## E10 8.025519e-02 0.035961514 0.12642313 -0.0342693493 -0.019190320
## N1 1.305898e-01 0.048247963 0.14116633 0.0068305576 -0.048908626
## N2 -1.569819e-02 -0.035464330 -0.03917807 -0.0183223182 0.029098790
## N3 9.553045e-02 0.095586938 0.10277559 0.0551916804 0.012392057
## N4 -5.293435e-02 0.022670723 -0.09228247 0.0808431103 0.063662414
## N5 1.705158e-01 -0.012520930 0.19107670 -0.0745397677 -0.085224542
## N6 1.950284e-01 -0.010052823 0.19456982 -0.0464808615 -0.072445911
## N7 1.907058e-01 -0.044793620 0.25059368 -0.1098742621 -0.093182966
## N8 1.854308e-01 -0.069963242 0.27958246 -0.1134136323 -0.101784092
## N9 1.496016e-01 0.028092632 0.19717828 -0.0259159852 -0.043362105
## N10 1.585329e-01 -0.055222444 0.23982390 -0.1268696865 -0.088777444
## A1 5.061501e-02 -0.071128286 0.16554142 -0.0541220073 -0.032700233
## A2 2.800457e-05 0.019391257 -0.10778690 0.0803473409 0.075897081
## A3 1.650140e-01 -0.052445911 0.22581350 -0.1199779864 -0.100063500
## A4 -1.092789e-02 0.052925918 -0.10930790 0.1014952185 0.074664918
## A5 2.375323e-02 -0.010657873 0.13843014 -0.0685420370 -0.037756551
## A6 2.939900e-02 0.035779941 -0.06026898 0.0733752746 0.043064180
## A7 4.399816e-02 -0.018526583 0.16743475 -0.0780939164 -0.051490830
## A8 -3.672455e-02 0.066045110 -0.13970584 0.1199666924 0.096440435
## A9 -1.211277e-02 0.035423962 -0.09972343 0.1292503046 0.095159502
## A10 -7.550166e-02 0.054337766 -0.16450696 0.1247354390 0.186947172
## C1 -3.104588e-01 0.309466955 -0.31742043 0.4269535570 0.330269966
## C2 5.102280e-01 -0.259465724 0.23473133 -0.2652910292 -0.143739054
## C3 -2.108307e-01 0.249483972 -0.16769921 0.2328662870 0.337871523
## C4 4.586262e-01 -0.255198401 0.38941908 -0.3084476745 -0.234082393
## C5 -3.861349e-01 0.291915225 -0.36577182 0.4240471924 0.275828214
## C6 1.000000e+00 -0.301389685 0.30709280 -0.3186365091 -0.196668108
## C7 -3.013897e-01 1.000000000 -0.21111284 0.3966830815 0.277998409
## C8 3.070928e-01 -0.211112844 1.00000000 -0.3060686324 -0.269695973
## C9 -3.186365e-01 0.396683082 -0.30606863 1.0000000000 0.305641960
## C10 -1.966681e-01 0.277998409 -0.26969597 0.3056419597 1.000000000
## O1 -1.803740e-03 0.058795415 -0.06696161 0.0044924686 0.144662146
## O2 5.279704e-02 0.013832030 0.09332248 0.0359532076 -0.106327278
## O3 8.762565e-02 -0.016500824 0.03330274 -0.0553070413 0.046408157
## O4 -1.022032e-03 0.028343731 0.05555715 0.0626408555 -0.065888359
## O5 -2.992756e-02 0.081438345 -0.11031105 0.0858676536 0.236683664
## O6 7.382249e-03 0.030956370 0.05349323 0.0279830837 -0.058365255
## O7 -6.419744e-02 0.092316871 -0.12588876 0.0842065167 0.255020843
## O8 7.340715e-02 0.016732368 0.04088483 -0.0491517802 0.097850293
## O9 1.690205e-02 0.100944802 -0.01094459 0.0462126809 0.107625294
## O10 3.024826e-02 0.029877476 -0.05591857 0.0204470417 0.185475585
## O1 O2 O3 O4 O5
## E1 4.027205e-02 -0.025472354 0.071761285 -0.005280127 0.1849613045
## E2 -5.521832e-02 0.057515149 -0.041844977 0.035192004 -0.1289528733
## E3 3.111183e-02 -0.067281482 -0.002509103 -0.021722821 0.1638887875
## E4 -4.526094e-02 0.096859554 0.026786701 0.060609255 -0.1443054997
## E5 8.985206e-02 -0.070091821 0.060817443 -0.052450832 0.2031713039
## E6 -1.797429e-01 0.186777083 -0.093065855 0.153552952 -0.2319078122
## E7 5.626675e-02 -0.055346284 0.040733665 -0.035439081 0.1639686764
## E8 -2.510336e-02 0.045579659 -0.040726002 0.038997956 -0.1302515957
## E9 7.004640e-02 -0.077844262 0.087366736 -0.049328692 0.2192609296
## E10 -6.650586e-02 0.103789214 -0.008828102 0.057077824 -0.1414641129
## N1 -4.561126e-02 0.173681581 0.033201478 0.087419175 -0.1281136824
## N2 3.860312e-02 -0.075789355 0.031312652 -0.038491922 0.1329656456
## N3 -4.722388e-02 0.139503855 0.080795175 0.054207111 -0.0941298755
## N4 -2.464720e-02 0.011392883 -0.032578689 0.055255129 0.0804988941
## N5 -1.162475e-01 0.212842804 0.014091543 0.126851878 -0.0852035660
## N6 -9.207479e-02 0.199674123 0.036165869 0.118096966 -0.1096327634
## N7 -8.619826e-02 0.137805606 0.084297303 0.069045643 -0.0781342929
## N8 -8.192127e-02 0.146609592 0.069808079 0.084987485 -0.0876621195
## N9 -4.548031e-02 0.169820876 0.035463011 0.118649423 -0.0710498224
## N10 -4.863839e-03 0.086351421 0.074915505 0.013835282 -0.1229802091
## A1 -1.051777e-01 0.117240401 -0.017507454 0.119611182 -0.0224970554
## A2 7.490945e-02 -0.054896890 0.084153525 -0.109502829 0.1098748271
## A3 4.215245e-02 0.049498869 0.066865385 0.054752540 0.0227415595
## A4 -6.241288e-03 -0.011347166 0.071639445 -0.065798358 0.0263873128
## A5 -1.319451e-02 0.060247401 -0.025898470 0.123361074 -0.0145558854
## A6 -8.462579e-02 0.079236828 0.040192674 0.010337734 0.0002254744
## A7 -4.173967e-02 0.082851834 -0.042578506 0.133631980 -0.0665901545
## A8 1.667307e-02 -0.022733358 0.041130536 -0.052610724 0.0638514537
## A9 9.363771e-05 -0.029165175 0.100319779 -0.068679282 0.0807745087
## A10 4.538956e-02 -0.054788358 0.078478379 -0.039573240 0.1981718324
## C1 1.290992e-01 -0.071161835 -0.012502672 -0.003185954 0.2000356094
## C2 6.932286e-02 0.002978895 0.094639775 -0.040718948 0.0065715001
## C3 1.502654e-01 -0.127063354 0.119011206 -0.091108127 0.1984007469
## C4 -2.988574e-02 0.111623476 0.094213900 0.038346088 -0.1291432921
## C5 -3.465213e-02 0.025291476 -0.066020528 0.049216204 0.0863517537
## C6 -1.803740e-03 0.052797038 0.087625655 -0.001022032 -0.0299275630
## C7 5.879542e-02 0.013832030 -0.016500824 0.028343731 0.0814383450
## C8 -6.696161e-02 0.093322478 0.033302739 0.055557145 -0.1103110527
## C9 4.492469e-03 0.035953208 -0.055307041 0.062640855 0.0858676536
## C10 1.446621e-01 -0.106327278 0.046408157 -0.065888359 0.2366836641
## O1 1.000000e+00 -0.328459620 0.241429348 -0.230202813 0.3095397259
## O2 -3.284596e-01 1.000000000 -0.214518623 0.535828360 -0.2770630494
## O3 2.414293e-01 -0.214518623 1.000000000 -0.228118323 0.2970681256
## O4 -2.302028e-01 0.535828360 -0.228118323 1.000000000 -0.1942103516
## O5 3.095397e-01 -0.277063049 0.297068126 -0.194210352 1.0000000000
## O6 -2.060375e-01 0.280578282 -0.525804338 0.282693253 -0.3307052854
## O7 3.415650e-01 -0.366813093 0.159385154 -0.193616881 0.3844585043
## O8 6.332769e-01 -0.277278795 0.214768854 -0.215187502 0.2466359831
## O9 1.993089e-01 -0.157036036 0.208655085 -0.195471393 0.1402314936
## O10 3.018820e-01 -0.311631601 0.430521335 -0.279376167 0.6242570580
## O6 O7 O8 O9 O10
## E1 -0.094801032 0.08247856 0.004925744 -0.08111320 0.163392958
## E2 0.104338992 -0.05752267 -0.021139541 0.06580063 -0.140846382
## E3 -0.078249530 0.13760710 -0.073620477 -0.08878772 0.121376841
## E4 0.089785289 -0.07367546 0.005511235 0.10980066 -0.129292330
## E5 -0.108058018 0.12339833 0.014648611 -0.02592300 0.196063694
## E6 0.193549826 -0.15414021 -0.109839069 -0.01514834 -0.257707820
## E7 -0.091714172 0.10112471 0.011853671 -0.05366362 0.164489088
## E8 0.097904516 -0.02019847 -0.012416479 0.08302367 -0.117268518
## E9 -0.119048505 0.12416145 0.051199759 -0.03808350 0.199708459
## E10 0.085279534 -0.08949952 -0.008108788 0.11269543 -0.132085604
## N1 0.073371853 -0.17441190 0.021978216 0.11189835 -0.089893141
## N2 -0.070764599 0.13814984 -0.020326858 -0.05848762 0.094973397
## N3 0.037541740 -0.10641224 0.015003441 0.17726059 -0.056607451
## N4 0.007725755 0.07107893 -0.063040031 -0.07148023 0.039622411
## N5 0.085232276 -0.15753532 -0.032589412 0.05220014 -0.090663792
## N6 0.073422737 -0.15374849 -0.008577145 0.08947513 -0.082507878
## N7 0.022979692 -0.09664680 0.056967221 0.07609092 -0.030273764
## N8 0.034713822 -0.11346619 0.061581983 0.07150626 -0.044099175
## N9 0.076323965 -0.10787112 0.061323512 0.08944930 -0.058721353
## N10 0.057780733 -0.10847631 0.099089378 0.16790160 -0.047208847
## A1 0.054074359 -0.01189662 -0.051306509 -0.10667884 -0.039572906
## A2 -0.097968029 0.07514290 -0.007637847 0.08657693 0.136631597
## A3 0.036293911 -0.03546737 0.157548095 -0.01475701 0.042206742
## A4 -0.064932440 0.02609176 -0.067638002 0.14434985 0.044222998
## A5 0.078905004 -0.01764421 0.042850306 -0.07936103 -0.048982458
## A6 -0.024298683 -0.03574691 -0.112956103 0.10065767 0.006259827
## A7 0.133184330 -0.04275453 0.041288647 -0.05668744 -0.095938962
## A8 -0.056278248 0.07303236 -0.026188939 0.11198405 0.081469550
## A9 -0.098542944 0.06538430 -0.039763151 0.14815406 0.103014930
## A10 -0.113042527 0.15750753 -0.034295770 0.05064856 0.173549359
## C1 -0.019218294 0.21619978 0.041781394 0.02706792 0.108975762
## C2 -0.024031350 -0.00946889 0.114068341 0.05073187 0.059534386
## C3 -0.103959775 0.23940765 0.100220079 0.13516894 0.177144021
## C4 0.044408232 -0.15496274 0.085985373 0.05032270 -0.022950025
## C5 0.029236338 0.10490983 -0.102527916 -0.03809029 0.020239486
## C6 0.007382249 -0.06419744 0.073407147 0.01690205 0.030248260
## C7 0.030956370 0.09231687 0.016732368 0.10094480 0.029877476
## C8 0.053493232 -0.12588876 0.040884833 -0.01094459 -0.055918571
## C9 0.027983084 0.08420652 -0.049151780 0.04621268 0.020447042
## C10 -0.058365255 0.25502084 0.097850293 0.10762529 0.185475585
## O1 -0.206037458 0.34156495 0.633276899 0.19930887 0.301881998
## O2 0.280578282 -0.36681309 -0.277278795 -0.15703604 -0.311631601
## O3 -0.525804338 0.15938515 0.214768854 0.20865509 0.430521335
## O4 0.282693253 -0.19361688 -0.215187502 -0.19547139 -0.279376167
## O5 -0.330705285 0.38445850 0.246635983 0.14023149 0.624257058
## O6 1.000000000 -0.17518258 -0.141674007 -0.11643284 -0.430823022
## O7 -0.175182582 1.00000000 0.269713511 0.11340345 0.328895967
## O8 -0.141674007 0.26971351 1.000000000 0.19295316 0.271114163
## O9 -0.116432843 0.11340345 0.192953160 1.00000000 0.192714937
## O10 -0.430823022 0.32889597 0.271114163 0.19271494 1.000000000
lambda <- EFAresult2$loadings[1:50,1:10]
lambda
## Factor1 Factor2 Factor3 Factor4 Factor5
## E1 0.659837960 -0.084563971 0.066168363 0.007944383 3.529024e-05
## E2 -0.698960917 -0.032287213 -0.096529279 0.022636650 -6.743050e-03
## E3 0.640563660 -0.271039505 0.244915054 0.138466399 -3.310076e-02
## E4 -0.724486428 0.116799351 -0.040230171 -0.030048428 1.856336e-02
## E5 0.727590273 -0.081120629 0.197770248 0.103716796 4.123486e-02
## E6 -0.598220489 0.045161894 -0.124122139 -0.040443349 -1.158912e-01
## E7 0.728079507 -0.120936335 0.146380475 0.052990320 2.756420e-02
## E8 -0.563369123 0.030437836 0.028483996 0.063606487 2.692321e-02
## E9 0.602261836 -0.069186584 0.010492744 -0.018795472 2.856074e-02
## E10 -0.666365208 0.164816413 -0.046678571 -0.036115428 -1.782109e-02
## N1 -0.100861622 0.731932792 0.050387218 -0.030251856 -2.493498e-03
## N2 0.082612997 -0.578632415 0.036313013 -0.039048107 9.839713e-03
## N3 -0.134985608 0.644931733 0.148324808 0.033459035 3.064452e-03
## N4 0.124931794 -0.335747904 -0.009768606 0.085299980 -6.475451e-02
## N5 -0.060979170 0.530064198 -0.007970757 -0.136959472 -9.051610e-02
## N6 -0.072237073 0.731349435 0.041048901 -0.111804071 -5.894574e-02
## N7 -0.033619059 0.629577825 -0.054677486 -0.161383363 -2.038776e-02
## N8 -0.041630291 0.665145268 -0.057732315 -0.165885743 -1.368153e-02
## N9 -0.065714282 0.690342502 -0.157803876 -0.075251148 6.185507e-03
## N10 -0.247001480 0.573548324 -0.024619293 -0.171183408 7.844775e-02
## A1 -0.052918052 0.024084388 -0.409342977 -0.035276794 -1.076219e-01
## A2 0.332953935 -0.070475113 0.509027102 0.017924453 3.913519e-02
## A3 0.073572966 0.225681028 -0.399041526 -0.204892272 1.022361e-01
## A4 0.050085821 0.045661444 0.809692164 0.036013204 3.248286e-03
## A5 -0.152197296 0.001100411 -0.633560851 -0.013111015 6.120068e-03
## A6 0.006028869 0.138461415 0.613114921 0.021930133 -9.227338e-02
## A7 -0.320197096 0.076710354 -0.584433067 -0.036102697 1.120183e-02
## A8 0.127318795 -0.033940979 0.570685090 0.092388446 2.373357e-02
## A9 0.120861036 0.083946823 0.738800819 0.059017331 6.988468e-03
## A10 0.333329466 -0.155124820 0.391744297 0.144444988 1.541150e-03
## C1 0.031879441 -0.103753602 0.018777598 0.590941863 9.770512e-02
## C2 0.035399112 0.082515551 0.049053858 -0.560757224 1.210213e-01
## C3 -0.040607679 -0.006465014 0.090069043 0.399372497 1.476516e-01
## C4 -0.083922556 0.326919728 -0.034940938 -0.573885129 5.289667e-02
## C5 0.076828449 -0.091807878 0.076213211 0.618870986 -8.263988e-02
## C6 -0.021041019 0.144197413 0.015612489 -0.624722180 4.820167e-02
## C7 -0.047505593 0.087126956 0.025132192 0.530962016 5.621576e-02
## C8 -0.081525085 0.176162442 -0.137121629 -0.482189178 -4.565707e-03
## C9 0.047974732 0.034602373 0.092467329 0.612558236 -1.457115e-02
## C10 0.022657453 -0.020235964 0.072467161 0.450827893 1.373568e-01
## O1 0.062927801 -0.049021277 -0.014227501 0.054713233 7.702943e-01
## O2 -0.051288522 0.205851674 -0.022665961 -0.024306765 -3.271121e-01
## O3 0.032382270 0.074712323 0.044795273 -0.062113761 1.708800e-01
## O4 -0.017584846 0.110912912 -0.097432605 0.041341326 -2.334327e-01
## O5 0.195853278 -0.085259105 -0.002528613 0.146544231 2.017832e-01
## O6 -0.111890574 0.059887927 -0.056970539 0.002919437 -8.300110e-02
## O7 0.077969194 -0.167194382 0.024724778 0.181652527 3.364170e-01
## O8 0.021832555 0.062049601 -0.087835741 -0.047129863 7.721527e-01
## O9 -0.127285784 0.156459925 0.174916292 0.043015527 2.347292e-01
## O10 0.184011580 -0.040514588 0.025519506 0.039255318 1.996020e-01
## Factor6 Factor7 Factor8 Factor9 Factor10
## E1 0.0582558743 0.047444424 0.169413396 0.057569318 0.012517738
## E2 0.0012283336 -0.010798372 0.113654436 0.074672780 -0.041904221
## E3 -0.0125813538 0.027229999 0.127602793 0.021199108 0.149196030
## E4 0.0419043753 -0.003802417 0.140906087 0.054409631 0.046085422
## E5 0.0323631895 0.045306634 0.069396478 -0.009735316 0.101463880
## E6 -0.0695308847 -0.098657069 0.256403904 0.091334503 -0.070500600
## E7 0.0332188853 -0.003303071 0.131776715 0.035249112 0.117639409
## E8 -0.0311043501 -0.029224171 0.049789067 -0.014479293 0.090257325
## E9 0.0648369724 0.124826696 0.080640765 0.050253041 -0.063980207
## E10 -0.0016866436 0.035729497 0.079756201 0.025312962 0.029096020
## N1 -0.0088717063 -0.066825163 0.032425788 -0.101260072 0.035633399
## N2 0.0488708837 0.113772568 0.224130666 0.098568571 0.056865601
## N3 0.0502786509 -0.037379907 0.054634596 -0.100839613 0.082102885
## N4 -0.0322985637 0.082863917 0.207834909 -0.037063826 -0.038479911
## N5 -0.0343602856 0.010753059 0.151540186 0.020601316 -0.057375069
## N6 -0.0306623171 0.015340409 0.098957407 0.057594214 -0.048391685
## N7 0.0285979963 0.020812012 0.031676721 0.524722199 0.020051750
## N8 0.0085443221 0.008080320 0.008241519 0.596961760 -0.025694870
## N9 -0.0347797942 0.046749266 0.103174326 0.080646004 -0.002335210
## N10 0.0364360872 -0.034276664 -0.042102633 0.196964798 -0.037699813
## A1 0.0147374521 0.047305160 0.243596012 0.122956011 -0.075705527
## A2 0.0565553288 0.027139848 -0.001736949 0.014432447 0.354659246
## A3 0.0133089782 0.064564856 0.118016265 0.029449045 0.105019511
## A4 0.0359056067 0.008065885 0.044122553 0.002716266 -0.082669155
## A5 -0.0005420926 0.035289573 0.207682356 0.021756417 -0.189828875
## A6 0.0209775068 0.025978077 0.123834669 -0.000769383 -0.132042323
## A7 -0.0424236656 0.047291433 0.205200262 0.049453244 -0.363975291
## A8 0.0122913127 0.040793469 0.046187681 0.008012174 0.100674547
## A9 0.0681427769 0.069827251 0.060496474 0.047122434 -0.141229620
## A10 0.0679453546 0.135183517 0.143804106 0.040731656 -0.017762793
## C1 -0.0233912158 0.143445444 0.065930355 -0.005319610 0.076576414
## C2 -0.0063681081 0.149400400 0.131348826 -0.042752003 0.135056716
## C3 0.1193285966 0.175314634 0.041692759 0.002629638 0.101624487
## C4 0.0203797993 0.014591174 0.152775271 0.046814449 0.100402691
## C5 -0.0292026496 0.009146353 0.100230137 0.057076742 -0.062860948
## C6 -0.0143078321 0.152554067 0.161408827 -0.029900438 0.093875435
## C7 -0.0183859909 0.038749367 0.056700531 -0.058477659 0.071568166
## C8 0.0088491708 -0.016927416 0.123509968 0.115081046 -0.003142324
## C9 -0.0508655060 0.040947704 0.114239945 -0.052674899 0.055538847
## C10 0.0141099379 0.256719871 0.059687671 -0.014012093 0.049332595
## O1 0.1419254969 0.111756647 -0.070439535 -0.054767584 0.015019426
## O2 -0.2369282427 -0.207509124 0.379608656 -0.015355701 0.039213701
## O3 0.7392580540 0.118796326 0.052027027 0.012237167 0.018045061
## O4 -0.2742219354 -0.145463027 0.367599505 -0.005033794 -0.015283119
## O5 0.2822947541 0.637435810 -0.036029501 -0.011762852 -0.025136461
## O6 -0.6588591782 -0.148592470 0.147369813 -0.006617563 0.008909692
## O7 0.1009663294 0.372050341 -0.056795353 0.067101394 -0.004256968
## O8 0.0954579762 0.100875441 -0.047688232 0.028540662 -0.003227647
## O9 0.1817076118 0.140661633 -0.035917677 -0.023144424 0.045540192
## O10 0.4483705197 0.578913732 -0.090026313 -0.012017704 0.014942558
psi <- diag(1, nrow=10, ncol=10) #10 orthogonal factors
psi
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## [1,] 1 0 0 0 0 0 0 0 0 0
## [2,] 0 1 0 0 0 0 0 0 0 0
## [3,] 0 0 1 0 0 0 0 0 0 0
## [4,] 0 0 0 1 0 0 0 0 0 0
## [5,] 0 0 0 0 1 0 0 0 0 0
## [6,] 0 0 0 0 0 1 0 0 0 0
## [7,] 0 0 0 0 0 0 1 0 0 0
## [8,] 0 0 0 0 0 0 0 1 0 0
## [9,] 0 0 0 0 0 0 0 0 1 0
## [10,] 0 0 0 0 0 0 0 0 0 1
theta <- diag(EFAresult2$uniquenesses)
theta
## [,1] [,2] [,3] [,4] [,5] [,6] [,7]
## [1,] 0.5152049 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [2,] 0.0000000 0.4801681 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [3,] 0.0000000 0.0000000 0.3960726 0.000000 0.0000000 0.0000000 0.0000000
## [4,] 0.0000000 0.0000000 0.0000000 0.431902 0.0000000 0.0000000 0.0000000
## [5,] 0.0000000 0.0000000 0.0000000 0.000000 0.3941556 0.0000000 0.0000000
## [6,] 0.0000000 0.0000000 0.0000000 0.000000 0.0000000 0.5159973 0.0000000
## [7,] 0.0000000 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.3967192
## [8,] 0.0000000 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [9,] 0.0000000 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [10,] 0.0000000 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [11,] 0.0000000 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [12,] 0.0000000 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [13,] 0.0000000 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [14,] 0.0000000 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [15,] 0.0000000 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [16,] 0.0000000 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [17,] 0.0000000 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [18,] 0.0000000 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [19,] 0.0000000 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [20,] 0.0000000 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [21,] 0.0000000 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [22,] 0.0000000 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [23,] 0.0000000 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [24,] 0.0000000 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [25,] 0.0000000 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [26,] 0.0000000 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [27,] 0.0000000 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [28,] 0.0000000 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [29,] 0.0000000 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [30,] 0.0000000 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [31,] 0.0000000 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [32,] 0.0000000 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [33,] 0.0000000 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [34,] 0.0000000 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [35,] 0.0000000 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [36,] 0.0000000 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [37,] 0.0000000 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [38,] 0.0000000 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [39,] 0.0000000 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [40,] 0.0000000 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [41,] 0.0000000 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [42,] 0.0000000 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [43,] 0.0000000 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [44,] 0.0000000 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [45,] 0.0000000 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [46,] 0.0000000 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [47,] 0.0000000 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [48,] 0.0000000 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [49,] 0.0000000 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [50,] 0.0000000 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [,8] [,9] [,10] [,11] [,12] [,13]
## [1,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [2,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [3,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [4,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [5,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [6,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [7,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [8,] 0.6634496 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [9,] 0.0000000 0.5983072 0.0000000 0.0000000 0.0000000 0.0000000
## [10,] 0.0000000 0.0000000 0.5158641 0.0000000 0.0000000 0.0000000
## [11,] 0.0000000 0.0000000 0.0000000 0.4335222 0.0000000 0.0000000
## [12,] 0.0000000 0.0000000 0.0000000 0.0000000 0.5769024 0.0000000
## [13,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.5188934
## [14,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [15,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [16,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [17,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [18,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [19,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [20,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [21,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [22,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [23,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [24,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [25,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [26,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [27,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [28,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [29,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [30,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [31,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [32,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [33,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [34,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [35,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [36,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [37,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [38,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [39,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [40,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [41,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [42,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [43,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [44,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [45,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [46,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [47,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [48,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [49,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [50,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [,14] [,15] [,16] [,17] [,18] [,19] [,20]
## [1,] 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000 0.0000000
## [2,] 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000 0.0000000
## [3,] 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000 0.0000000
## [4,] 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000 0.0000000
## [5,] 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000 0.0000000
## [6,] 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000 0.0000000
## [7,] 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000 0.0000000
## [8,] 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000 0.0000000
## [9,] 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000 0.0000000
## [10,] 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000 0.0000000
## [11,] 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000 0.0000000
## [12,] 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000 0.0000000
## [13,] 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000 0.0000000
## [14,] 0.8061431 0.0000000 0.000000 0.0000000 0.0000000 0.0000000 0.0000000
## [15,] 0.0000000 0.6603217 0.000000 0.0000000 0.0000000 0.0000000 0.0000000
## [16,] 0.0000000 0.0000000 0.425623 0.0000000 0.0000000 0.0000000 0.0000000
## [17,] 0.0000000 0.0000000 0.000000 0.2950614 0.0000000 0.0000000 0.0000000
## [18,] 0.0000000 0.0000000 0.000000 0.0000000 0.1675805 0.0000000 0.0000000
## [19,] 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.4679567 0.0000000
## [20,] 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000 0.5294769
## [21,] 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000 0.0000000
## [22,] 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000 0.0000000
## [23,] 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000 0.0000000
## [24,] 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000 0.0000000
## [25,] 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000 0.0000000
## [26,] 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000 0.0000000
## [27,] 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000 0.0000000
## [28,] 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000 0.0000000
## [29,] 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000 0.0000000
## [30,] 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000 0.0000000
## [31,] 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000 0.0000000
## [32,] 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000 0.0000000
## [33,] 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000 0.0000000
## [34,] 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000 0.0000000
## [35,] 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000 0.0000000
## [36,] 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000 0.0000000
## [37,] 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000 0.0000000
## [38,] 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000 0.0000000
## [39,] 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000 0.0000000
## [40,] 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000 0.0000000
## [41,] 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000 0.0000000
## [42,] 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000 0.0000000
## [43,] 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000 0.0000000
## [44,] 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000 0.0000000
## [45,] 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000 0.0000000
## [46,] 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000 0.0000000
## [47,] 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000 0.0000000
## [48,] 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000 0.0000000
## [49,] 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000 0.0000000
## [50,] 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000 0.0000000
## [,21] [,22] [,23] [,24] [,25] [,26] [,27]
## [1,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [2,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [3,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [4,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [5,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [6,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [7,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [8,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [9,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [10,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [11,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [12,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [13,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [14,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [15,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [16,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [17,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [18,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [19,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [20,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [21,] 0.7335856 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [22,] 0.0000000 0.4932837 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [23,] 0.0000000 0.0000000 0.7018149 0.0000000 0.0000000 0.000000 0.0000000
## [24,] 0.0000000 0.0000000 0.0000000 0.3283553 0.0000000 0.000000 0.0000000
## [25,] 0.0000000 0.0000000 0.0000000 0.0000000 0.4943405 0.000000 0.0000000
## [26,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.562001 0.0000000
## [27,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.3675316
## [28,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [29,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [30,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [31,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [32,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [33,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [34,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [35,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [36,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [37,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [38,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [39,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [40,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [41,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [42,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [43,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [44,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [45,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [46,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [47,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [48,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [49,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [50,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [,28] [,29] [,30] [,31] [,32] [,33] [,34]
## [1,] 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [2,] 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [3,] 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [4,] 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [5,] 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [6,] 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [7,] 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [8,] 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [9,] 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [10,] 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [11,] 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [12,] 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [13,] 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [14,] 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [15,] 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [16,] 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [17,] 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [18,] 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [19,] 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [20,] 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [21,] 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [22,] 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [23,] 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [24,] 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [25,] 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [26,] 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [27,] 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [28,] 0.6337094 0.000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [29,] 0.0000000 0.393642 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [30,] 0.0000000 0.000000 0.6449522 0.000000 0.0000000 0.0000000 0.0000000
## [31,] 0.0000000 0.000000 0.0000000 0.597745 0.0000000 0.0000000 0.0000000
## [32,] 0.0000000 0.000000 0.0000000 0.000000 0.6007594 0.0000000 0.0000000
## [33,] 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.7518485 0.0000000
## [34,] 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.0000000 0.5164766
## [35,] 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [36,] 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [37,] 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [38,] 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [39,] 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [40,] 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [41,] 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [42,] 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [43,] 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [44,] 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [45,] 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [46,] 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [47,] 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [48,] 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [49,] 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [50,] 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
## [,35] [,36] [,37] [,38] [,39] [,40] [,41]
## [1,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [2,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [3,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [4,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [5,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [6,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [7,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [8,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [9,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [10,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [11,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [12,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [13,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [14,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [15,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [16,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [17,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [18,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [19,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [20,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [21,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [22,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [23,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [24,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [25,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [26,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [27,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [28,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [29,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [30,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [31,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [32,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [33,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [34,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [35,] 0.5718375 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [36,] 0.0000000 0.5266846 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [37,] 0.0000000 0.0000000 0.6908419 0.0000000 0.0000000 0.000000 0.0000000
## [38,] 0.0000000 0.0000000 0.0000000 0.6821161 0.0000000 0.000000 0.0000000
## [39,] 0.0000000 0.0000000 0.0000000 0.0000000 0.5893366 0.000000 0.0000000
## [40,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.699417 0.0000000
## [41,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.3562688
## [42,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [43,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [44,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [45,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [46,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [47,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [48,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [49,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [50,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000
## [,42] [,43] [,44] [,45] [,46] [,47]
## [1,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [2,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [3,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [4,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [5,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [6,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [7,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [8,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [9,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [10,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [11,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [12,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [13,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [14,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [15,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [16,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [17,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [18,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [19,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [20,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [21,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [22,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [23,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [24,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [25,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [26,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [27,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [28,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [29,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [30,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [31,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [32,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [33,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [34,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [35,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [36,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [37,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [38,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [39,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [40,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [41,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [42,] 0.6018136 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [43,] 0.0000000 0.3945077 0.0000000 0.0000000 0.0000000 0.0000000
## [44,] 0.0000000 0.0000000 0.6899457 0.0000000 0.0000000 0.0000000
## [45,] 0.0000000 0.0000000 0.0000000 0.4040908 0.0000000 0.0000000
## [46,] 0.0000000 0.0000000 0.0000000 0.0000000 0.4957334 0.0000000
## [47,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.6628193
## [48,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [49,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [50,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [,48] [,49] [,50]
## [1,] 0.0000000 0.0000000 0.0000000
## [2,] 0.0000000 0.0000000 0.0000000
## [3,] 0.0000000 0.0000000 0.0000000
## [4,] 0.0000000 0.0000000 0.0000000
## [5,] 0.0000000 0.0000000 0.0000000
## [6,] 0.0000000 0.0000000 0.0000000
## [7,] 0.0000000 0.0000000 0.0000000
## [8,] 0.0000000 0.0000000 0.0000000
## [9,] 0.0000000 0.0000000 0.0000000
## [10,] 0.0000000 0.0000000 0.0000000
## [11,] 0.0000000 0.0000000 0.0000000
## [12,] 0.0000000 0.0000000 0.0000000
## [13,] 0.0000000 0.0000000 0.0000000
## [14,] 0.0000000 0.0000000 0.0000000
## [15,] 0.0000000 0.0000000 0.0000000
## [16,] 0.0000000 0.0000000 0.0000000
## [17,] 0.0000000 0.0000000 0.0000000
## [18,] 0.0000000 0.0000000 0.0000000
## [19,] 0.0000000 0.0000000 0.0000000
## [20,] 0.0000000 0.0000000 0.0000000
## [21,] 0.0000000 0.0000000 0.0000000
## [22,] 0.0000000 0.0000000 0.0000000
## [23,] 0.0000000 0.0000000 0.0000000
## [24,] 0.0000000 0.0000000 0.0000000
## [25,] 0.0000000 0.0000000 0.0000000
## [26,] 0.0000000 0.0000000 0.0000000
## [27,] 0.0000000 0.0000000 0.0000000
## [28,] 0.0000000 0.0000000 0.0000000
## [29,] 0.0000000 0.0000000 0.0000000
## [30,] 0.0000000 0.0000000 0.0000000
## [31,] 0.0000000 0.0000000 0.0000000
## [32,] 0.0000000 0.0000000 0.0000000
## [33,] 0.0000000 0.0000000 0.0000000
## [34,] 0.0000000 0.0000000 0.0000000
## [35,] 0.0000000 0.0000000 0.0000000
## [36,] 0.0000000 0.0000000 0.0000000
## [37,] 0.0000000 0.0000000 0.0000000
## [38,] 0.0000000 0.0000000 0.0000000
## [39,] 0.0000000 0.0000000 0.0000000
## [40,] 0.0000000 0.0000000 0.0000000
## [41,] 0.0000000 0.0000000 0.0000000
## [42,] 0.0000000 0.0000000 0.0000000
## [43,] 0.0000000 0.0000000 0.0000000
## [44,] 0.0000000 0.0000000 0.0000000
## [45,] 0.0000000 0.0000000 0.0000000
## [46,] 0.0000000 0.0000000 0.0000000
## [47,] 0.0000000 0.0000000 0.0000000
## [48,] 0.3671309 0.0000000 0.0000000
## [49,] 0.0000000 0.8150722 0.0000000
## [50,] 0.0000000 0.0000000 0.3778156
We do the multiplication and addition on the right side of the equation.
rightside <- lambda %*% psi %*% t(lambda) + theta
And check the difference
diff <- sigma - rightside
round(diff,2)
## E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 N1
## E1 0.00 0.02 -0.01 -0.02 -0.04 0.02 0.06 0.00 0.03 0.03 0.01
## E2 0.02 0.00 0.00 0.00 -0.02 0.10 0.03 -0.02 0.04 -0.01 0.02
## E3 -0.01 0.00 0.00 0.00 0.02 0.01 0.00 0.01 0.02 0.00 0.01
## E4 -0.02 0.00 0.00 0.00 0.02 0.00 0.02 0.03 -0.02 -0.01 0.00
## E5 -0.04 -0.02 0.02 0.02 0.00 -0.01 0.03 0.04 -0.04 -0.04 0.00
## E6 0.02 0.10 0.01 0.00 -0.01 0.00 0.03 -0.02 0.02 -0.02 0.01
## E7 0.06 0.03 0.00 0.02 0.03 0.03 0.00 0.04 -0.02 -0.03 0.01
## E8 0.00 -0.02 0.01 0.03 0.04 -0.02 0.04 0.00 -0.17 0.00 0.00
## E9 0.03 0.04 0.02 -0.02 -0.04 0.02 -0.02 -0.17 0.00 0.03 -0.01
## E10 0.03 -0.01 0.00 -0.01 -0.04 -0.02 -0.03 0.00 0.03 0.00 0.00
## N1 0.01 0.02 0.01 0.00 0.00 0.01 0.01 0.00 -0.01 0.00 0.00
## N2 -0.01 -0.02 0.03 0.00 -0.01 -0.02 -0.02 0.00 0.01 0.03 -0.03
## N3 0.01 0.00 0.01 0.01 0.01 0.00 0.01 0.00 0.02 0.01 0.04
## N4 -0.01 -0.01 -0.01 -0.01 -0.02 -0.01 -0.02 -0.01 0.00 0.01 0.01
## N5 -0.01 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 -0.01
## N6 -0.01 0.00 0.02 0.00 0.00 0.01 -0.01 0.00 0.00 0.00 -0.01
## N7 0.00 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00
## N8 0.00 0.00 0.00 0.00 0.00 -0.01 0.00 0.00 -0.01 0.00 0.00
## N9 0.00 -0.01 0.01 -0.01 -0.01 0.00 0.00 0.02 0.00 0.02 -0.01
## N10 0.02 0.02 -0.01 0.02 0.01 0.02 0.02 -0.01 0.02 -0.02 -0.01
## A1 0.00 0.01 0.00 0.02 0.01 0.02 0.00 -0.03 0.02 0.00 0.01
## A2 0.00 0.02 0.01 0.00 -0.01 0.01 -0.01 -0.03 0.02 0.01 0.01
## A3 0.02 -0.02 -0.01 0.00 0.00 -0.02 -0.01 0.00 0.02 0.03 -0.03
## A4 -0.01 -0.01 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 0.00 0.00
## A5 0.00 0.01 0.02 0.00 0.00 0.00 0.02 0.02 -0.01 0.00 0.02
## A6 0.01 -0.01 0.00 0.00 0.00 0.01 0.00 0.00 -0.01 0.01 0.01
## A7 0.00 -0.02 0.00 0.01 0.02 -0.01 -0.01 0.03 -0.01 -0.01 0.00
## A8 0.01 -0.01 -0.01 0.00 0.01 -0.01 0.01 0.04 -0.02 0.00 0.00
## A9 0.00 0.00 -0.01 0.00 0.00 -0.01 -0.01 -0.01 0.02 0.00 -0.01
## A10 0.02 0.00 0.01 0.01 0.03 -0.01 0.01 0.03 -0.02 0.01 0.01
## C1 0.00 -0.01 0.01 -0.01 -0.01 0.00 -0.02 -0.02 0.00 0.00 0.02
## C2 -0.01 0.00 0.00 0.00 0.00 -0.01 -0.01 -0.02 0.00 -0.01 0.01
## C3 0.00 0.00 0.00 -0.01 0.01 -0.01 0.00 0.00 0.00 0.00 -0.01
## C4 0.00 -0.01 -0.02 0.01 0.00 0.00 0.01 -0.01 0.01 -0.01 0.00
## C5 0.00 0.00 -0.01 0.01 0.01 0.02 0.01 -0.01 0.00 0.00 0.00
## C6 -0.01 -0.01 0.00 -0.02 0.00 0.01 -0.01 0.00 0.00 0.00 0.00
## C7 -0.01 -0.02 -0.01 -0.01 -0.01 -0.02 0.00 0.01 0.02 0.00 -0.01
## C8 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.02 0.01 0.00
## C9 -0.01 -0.01 -0.01 -0.01 0.00 0.00 -0.01 -0.03 0.02 0.01 -0.01
## C10 0.00 -0.01 -0.01 0.00 0.00 -0.01 0.00 -0.02 0.02 0.01 -0.01
## O1 0.00 0.00 0.01 0.00 0.00 -0.01 -0.01 0.00 -0.01 0.00 0.01
## O2 -0.01 -0.02 -0.03 -0.01 -0.01 -0.03 -0.03 -0.01 -0.01 0.00 -0.01
## O3 0.00 -0.02 0.00 0.00 0.00 0.00 -0.02 0.00 0.00 0.00 -0.01
## O4 -0.02 -0.03 -0.01 0.00 -0.01 -0.03 -0.03 0.00 -0.02 0.00 -0.01
## O5 0.01 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.00 -0.01 0.01
## O6 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.00 0.01 -0.01 0.00
## O7 0.00 0.00 0.02 0.00 0.00 0.00 0.01 0.03 0.01 -0.01 0.00
## O8 0.00 0.00 -0.01 0.00 -0.01 0.00 0.00 -0.01 0.00 0.00 0.00
## O9 -0.01 0.01 -0.01 0.00 0.02 -0.01 0.02 0.00 0.02 0.01 -0.01
## O10 0.00 0.01 -0.01 0.00 0.01 0.00 0.01 0.01 -0.01 -0.01 0.00
## N2 N3 N4 N5 N6 N7 N8 N9 N10 A1 A2
## E1 -0.01 0.01 -0.01 -0.01 -0.01 0.00 0.00 0.00 0.02 0.00 0.00
## E2 -0.02 0.00 -0.01 0.00 0.00 -0.01 0.00 -0.01 0.02 0.01 0.02
## E3 0.03 0.01 -0.01 0.01 0.02 0.00 0.00 0.01 -0.01 0.00 0.01
## E4 0.00 0.01 -0.01 0.00 0.00 0.00 0.00 -0.01 0.02 0.02 0.00
## E5 -0.01 0.01 -0.02 0.00 0.00 0.00 0.00 -0.01 0.01 0.01 -0.01
## E6 -0.02 0.00 -0.01 0.01 0.01 0.00 -0.01 0.00 0.02 0.02 0.01
## E7 -0.02 0.01 -0.02 0.00 -0.01 0.00 0.00 0.00 0.02 0.00 -0.01
## E8 0.00 0.00 -0.01 0.00 0.00 0.00 0.00 0.02 -0.01 -0.03 -0.03
## E9 0.01 0.02 0.00 0.00 0.00 0.00 -0.01 0.00 0.02 0.02 0.02
## E10 0.03 0.01 0.01 0.00 0.00 0.01 0.00 0.02 -0.02 0.00 0.01
## N1 -0.03 0.04 0.01 -0.01 -0.01 0.00 0.00 -0.01 -0.01 0.01 0.01
## N2 0.00 -0.02 0.01 0.02 0.02 0.00 0.00 0.03 -0.02 -0.01 0.00
## N3 -0.02 0.00 -0.03 -0.02 -0.03 0.01 0.00 -0.04 0.02 0.03 0.00
## N4 0.01 -0.03 0.00 0.03 0.03 0.00 0.01 0.03 -0.13 0.02 0.00
## N5 0.02 -0.02 0.03 0.00 0.05 0.00 0.00 0.03 -0.02 0.00 0.02
## N6 0.02 -0.03 0.03 0.05 0.00 0.00 0.00 0.07 -0.01 0.00 0.00
## N7 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 -0.02 -0.01 0.00
## N8 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
## N9 0.03 -0.04 0.03 0.03 0.07 0.00 0.00 0.00 -0.02 -0.01 0.00
## N10 -0.02 0.02 -0.13 -0.02 -0.01 -0.02 0.00 -0.02 0.00 0.03 0.01
## A1 -0.01 0.03 0.02 0.00 0.00 -0.01 0.00 -0.01 0.03 0.00 0.02
## A2 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.01 0.02 0.00
## A3 0.03 0.00 0.00 -0.02 -0.01 0.00 -0.01 0.06 0.00 0.00 0.00
## A4 0.00 0.00 0.01 -0.01 -0.01 0.00 0.00 0.00 -0.01 -0.02 0.00
## A5 0.00 0.01 -0.02 0.00 -0.01 0.00 0.00 -0.01 0.00 0.00 0.02
## A6 0.02 0.01 0.00 0.01 0.03 0.00 0.00 -0.02 -0.01 -0.01 0.00
## A7 0.01 0.02 -0.01 -0.02 -0.02 0.00 0.00 -0.01 0.01 0.00 -0.03
## A8 0.00 0.01 -0.01 -0.02 0.00 0.00 0.00 -0.01 0.00 -0.02 -0.01
## A9 -0.01 0.00 -0.01 -0.01 -0.01 0.00 0.00 0.01 0.01 0.02 0.01
## A10 -0.01 0.01 -0.01 0.00 0.00 0.00 0.00 -0.01 0.02 0.01 0.00
## C1 0.01 0.00 0.00 -0.02 0.00 0.00 0.01 -0.01 -0.01 0.00 0.00
## C2 0.00 0.00 -0.01 -0.03 -0.01 0.01 0.00 -0.01 -0.01 -0.02 -0.01
## C3 0.01 0.06 -0.01 -0.03 -0.02 0.00 0.00 -0.01 0.01 0.03 -0.01
## C4 -0.01 0.00 0.01 -0.01 -0.01 -0.01 0.00 -0.02 0.03 0.01 -0.01
## C5 -0.02 -0.01 0.03 0.01 0.02 -0.01 0.00 -0.02 0.01 0.03 0.00
## C6 -0.01 0.01 0.01 -0.01 0.01 0.01 0.00 -0.02 -0.02 0.00 -0.02
## C7 0.02 0.00 0.00 0.01 -0.02 0.01 0.00 0.00 -0.01 -0.04 -0.01
## C8 0.02 0.02 0.00 0.00 -0.01 -0.01 0.00 -0.01 0.01 0.04 0.01
## C9 -0.01 -0.01 0.01 -0.02 -0.01 0.00 0.00 0.00 -0.01 -0.01 -0.01
## C10 -0.02 0.00 -0.01 -0.01 -0.01 0.00 0.00 0.00 0.01 0.01 -0.01
## O1 0.00 -0.02 0.00 0.01 0.01 -0.01 0.00 0.00 -0.01 0.00 0.01
## O2 0.00 -0.02 0.00 0.01 -0.01 0.00 0.01 -0.02 0.00 -0.01 0.01
## O3 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 -0.01 -0.01 0.00
## O4 -0.02 -0.02 0.00 -0.01 -0.01 0.00 0.01 -0.01 -0.01 -0.03 -0.01
## O5 0.00 -0.01 -0.01 0.02 0.00 0.00 0.00 -0.01 -0.01 -0.01 0.01
## O6 -0.01 0.01 0.00 0.00 -0.01 0.00 0.00 -0.01 0.03 0.00 0.01
## O7 0.00 0.02 0.00 0.00 0.01 0.00 -0.01 0.01 0.01 0.04 -0.01
## O8 0.00 -0.01 0.01 0.01 0.00 0.00 0.00 0.00 -0.01 0.00 0.00
## O9 0.02 0.02 0.01 0.00 -0.01 0.00 0.00 0.01 0.04 -0.01 0.01
## O10 -0.01 -0.01 0.00 -0.01 -0.01 0.00 0.00 -0.01 0.02 -0.01 0.00
## A3 A4 A5 A6 A7 A8 A9 A10 C1 C2 C3
## E1 0.02 -0.01 0.00 0.01 0.00 0.01 0.00 0.02 0.00 -0.01 0.00
## E2 -0.02 -0.01 0.01 -0.01 -0.02 -0.01 0.00 0.00 -0.01 0.00 0.00
## E3 -0.01 0.00 0.02 0.00 0.00 -0.01 -0.01 0.01 0.01 0.00 0.00
## E4 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 -0.01 0.00 -0.01
## E5 0.00 0.00 0.00 0.00 0.02 0.01 0.00 0.03 -0.01 0.00 0.01
## E6 -0.02 -0.01 0.00 0.01 -0.01 -0.01 -0.01 -0.01 0.00 -0.01 -0.01
## E7 -0.01 0.00 0.02 0.00 -0.01 0.01 -0.01 0.01 -0.02 -0.01 0.00
## E8 0.00 0.00 0.02 0.00 0.03 0.04 -0.01 0.03 -0.02 -0.02 0.00
## E9 0.02 0.00 -0.01 -0.01 -0.01 -0.02 0.02 -0.02 0.00 0.00 0.00
## E10 0.03 0.00 0.00 0.01 -0.01 0.00 0.00 0.01 0.00 -0.01 0.00
## N1 -0.03 0.00 0.02 0.01 0.00 0.00 -0.01 0.01 0.02 0.01 -0.01
## N2 0.03 0.00 0.00 0.02 0.01 0.00 -0.01 -0.01 0.01 0.00 0.01
## N3 0.00 0.00 0.01 0.01 0.02 0.01 0.00 0.01 0.00 0.00 0.06
## N4 0.00 0.01 -0.02 0.00 -0.01 -0.01 -0.01 -0.01 0.00 -0.01 -0.01
## N5 -0.02 -0.01 0.00 0.01 -0.02 -0.02 -0.01 0.00 -0.02 -0.03 -0.03
## N6 -0.01 -0.01 -0.01 0.03 -0.02 0.00 -0.01 0.00 0.00 -0.01 -0.02
## N7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00
## N8 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00
## N9 0.06 0.00 -0.01 -0.02 -0.01 -0.01 0.01 -0.01 -0.01 -0.01 -0.01
## N10 0.00 -0.01 0.00 -0.01 0.01 0.00 0.01 0.02 -0.01 -0.01 0.01
## A1 0.00 -0.02 0.00 -0.01 0.00 -0.02 0.02 0.01 0.00 -0.02 0.03
## A2 0.00 0.00 0.02 0.00 -0.03 -0.01 0.01 0.00 0.00 -0.01 -0.01
## A3 0.00 0.01 -0.02 -0.05 0.01 0.02 0.03 -0.05 0.00 -0.01 0.01
## A4 0.01 0.00 -0.01 -0.01 0.01 -0.01 0.02 -0.02 0.01 0.00 0.00
## A5 -0.02 -0.01 0.00 0.01 0.03 -0.02 0.00 0.02 -0.01 0.01 0.01
## A6 -0.05 -0.01 0.01 0.00 -0.01 0.01 -0.01 0.01 -0.01 0.00 -0.02
## A7 0.01 0.01 0.03 -0.01 0.00 0.02 0.00 0.01 0.01 0.02 0.01
## A8 0.02 -0.01 -0.02 0.01 0.02 0.00 0.00 0.03 0.00 -0.01 0.01
## A9 0.03 0.02 0.00 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.02
## A10 -0.05 -0.02 0.02 0.01 0.01 0.03 0.00 0.00 -0.04 0.00 0.00
## C1 0.00 0.01 -0.01 -0.01 0.01 0.00 0.00 -0.04 0.00 0.03 0.02
## C2 -0.01 0.00 0.01 0.00 0.02 -0.01 0.00 0.00 0.03 0.00 0.00
## C3 0.01 0.00 0.01 -0.02 0.01 0.01 0.02 0.00 0.02 0.00 0.00
## C4 0.03 0.01 -0.01 -0.02 0.01 0.01 0.00 -0.02 0.00 0.01 0.01
## C5 -0.01 -0.01 -0.01 0.01 -0.01 0.00 0.00 -0.01 0.01 0.00 -0.04
## C6 -0.03 -0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.03 0.08 -0.01
## C7 0.03 0.02 0.01 0.00 0.01 0.00 -0.01 -0.01 -0.02 0.00 0.01
## C8 0.02 0.01 0.00 -0.01 0.00 -0.01 0.01 -0.01 -0.01 -0.05 0.03
## C9 0.01 0.00 -0.01 -0.01 0.01 -0.01 0.02 -0.03 0.05 0.04 -0.03
## C10 -0.02 0.00 0.00 0.00 0.01 -0.01 0.00 0.04 0.00 0.04 0.08
## O1 -0.03 0.00 0.00 0.01 -0.01 -0.01 -0.01 0.00 0.01 0.00 -0.02
## O2 -0.01 0.00 -0.02 0.00 -0.02 0.00 -0.01 0.00 -0.01 -0.01 -0.02
## O3 0.01 0.00 -0.01 0.00 0.01 0.00 0.00 0.00 0.01 0.01 0.00
## O4 0.00 0.00 -0.01 -0.01 -0.02 0.00 0.00 0.00 0.00 -0.02 -0.02
## O5 0.00 0.00 0.00 0.01 -0.02 -0.01 -0.01 0.00 0.00 -0.02 -0.02
## O6 0.02 0.00 0.00 0.00 0.01 0.00 0.00 0.00 -0.01 -0.01 0.01
## O7 -0.01 0.00 0.01 -0.01 0.01 0.00 0.01 0.02 0.01 0.02 0.04
## O8 0.02 0.00 -0.01 0.01 -0.01 0.01 0.00 -0.01 -0.01 -0.01 -0.01
## O9 0.00 0.00 0.02 0.00 0.02 0.01 0.00 0.02 -0.02 0.01 0.01
## O10 0.00 0.00 0.00 0.00 0.00 0.01 0.00 -0.01 -0.01 -0.02 -0.02
## C4 C5 C6 C7 C8 C9 C10 O1 O2 O3 O4
## E1 0.00 0.00 -0.01 -0.01 0.01 -0.01 0.00 0.00 -0.01 0.00 -0.02
## E2 -0.01 0.00 -0.01 -0.02 0.00 -0.01 -0.01 0.00 -0.02 -0.02 -0.03
## E3 -0.02 -0.01 0.00 -0.01 0.00 -0.01 -0.01 0.01 -0.03 0.00 -0.01
## E4 0.01 0.01 -0.02 -0.01 0.01 -0.01 0.00 0.00 -0.01 0.00 0.00
## E5 0.00 0.01 0.00 -0.01 0.00 0.00 0.00 0.00 -0.01 0.00 -0.01
## E6 0.00 0.02 0.01 -0.02 0.00 0.00 -0.01 -0.01 -0.03 0.00 -0.03
## E7 0.01 0.01 -0.01 0.00 0.00 -0.01 0.00 -0.01 -0.03 -0.02 -0.03
## E8 -0.01 -0.01 0.00 0.01 0.01 -0.03 -0.02 0.00 -0.01 0.00 0.00
## E9 0.01 0.00 0.00 0.02 0.02 0.02 0.02 -0.01 -0.01 0.00 -0.02
## E10 -0.01 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.00
## N1 0.00 0.00 0.00 -0.01 0.00 -0.01 -0.01 0.01 -0.01 -0.01 -0.01
## N2 -0.01 -0.02 -0.01 0.02 0.02 -0.01 -0.02 0.00 0.00 0.00 -0.02
## N3 0.00 -0.01 0.01 0.00 0.02 -0.01 0.00 -0.02 -0.02 0.00 -0.02
## N4 0.01 0.03 0.01 0.00 0.00 0.01 -0.01 0.00 0.00 0.01 0.00
## N5 -0.01 0.01 -0.01 0.01 0.00 -0.02 -0.01 0.01 0.01 0.00 -0.01
## N6 -0.01 0.02 0.01 -0.02 -0.01 -0.01 -0.01 0.01 -0.01 0.00 -0.01
## N7 -0.01 -0.01 0.01 0.01 -0.01 0.00 0.00 -0.01 0.00 0.00 0.00
## N8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01
## N9 -0.02 -0.02 -0.02 0.00 -0.01 0.00 0.00 0.00 -0.02 0.00 -0.01
## N10 0.03 0.01 -0.02 -0.01 0.01 -0.01 0.01 -0.01 0.00 -0.01 -0.01
## A1 0.01 0.03 0.00 -0.04 0.04 -0.01 0.01 0.00 -0.01 -0.01 -0.03
## A2 -0.01 0.00 -0.02 -0.01 0.01 -0.01 -0.01 0.01 0.01 0.00 -0.01
## A3 0.03 -0.01 -0.03 0.03 0.02 0.01 -0.02 -0.03 -0.01 0.01 0.00
## A4 0.01 -0.01 -0.01 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00
## A5 -0.01 -0.01 0.00 0.01 0.00 -0.01 0.00 0.00 -0.02 -0.01 -0.01
## A6 -0.02 0.01 0.01 0.00 -0.01 -0.01 0.00 0.01 0.00 0.00 -0.01
## A7 0.01 -0.01 0.01 0.01 0.00 0.01 0.01 -0.01 -0.02 0.01 -0.02
## A8 0.01 0.00 0.00 0.00 -0.01 -0.01 -0.01 -0.01 0.00 0.00 0.00
## A9 0.00 0.00 0.00 -0.01 0.01 0.02 0.00 -0.01 -0.01 0.00 0.00
## A10 -0.02 -0.01 0.00 -0.01 -0.01 -0.03 0.04 0.00 0.00 0.00 0.00
## C1 0.00 0.01 0.03 -0.02 -0.01 0.05 0.00 0.01 -0.01 0.01 0.00
## C2 0.01 0.00 0.08 0.00 -0.05 0.04 0.04 0.00 -0.01 0.01 -0.02
## C3 0.01 -0.04 -0.01 0.01 0.03 -0.03 0.08 -0.02 -0.02 0.00 -0.02
## C4 0.00 0.03 0.01 0.00 0.02 0.02 0.01 -0.01 -0.01 0.00 -0.01
## C5 0.03 0.00 0.01 -0.02 -0.05 0.03 0.00 0.00 0.00 0.00 -0.02
## C6 0.01 0.01 0.00 -0.01 -0.03 0.03 0.03 0.00 -0.01 0.01 -0.02
## C7 0.00 -0.02 -0.01 0.00 0.03 0.05 0.01 -0.01 0.00 0.01 -0.01
## C8 0.02 -0.05 -0.03 0.03 0.00 -0.01 -0.04 -0.01 -0.01 -0.01 0.00
## C9 0.02 0.03 0.03 0.05 -0.01 0.00 0.00 -0.01 -0.01 0.00 -0.01
## C10 0.01 0.00 0.03 0.01 -0.04 0.00 0.00 -0.02 -0.01 0.00 -0.02
## O1 -0.01 0.00 0.00 -0.01 -0.01 -0.01 -0.02 0.00 0.02 0.00 0.03
## O2 -0.01 0.00 -0.01 0.00 -0.01 -0.01 -0.01 0.02 0.00 0.01 0.20
## O3 0.00 0.00 0.01 0.01 -0.01 0.00 0.00 0.00 0.01 0.00 0.01
## O4 -0.01 -0.02 -0.02 -0.01 0.00 -0.01 -0.02 0.03 0.20 0.01 0.00
## O5 -0.02 -0.01 -0.02 -0.01 0.01 -0.01 -0.03 0.02 0.03 -0.01 0.04
## O6 0.01 0.01 -0.01 0.01 0.01 -0.01 0.00 -0.01 -0.01 -0.01 -0.01
## O7 -0.01 0.00 0.01 -0.01 0.01 -0.02 0.03 0.00 -0.09 0.01 0.00
## O8 0.00 0.01 -0.01 0.00 0.00 0.00 0.00 0.01 0.02 0.00 0.01
## O9 0.00 -0.02 -0.01 0.04 0.00 0.01 0.01 -0.01 -0.03 0.01 -0.06
## O10 0.01 0.01 -0.01 0.00 0.01 0.00 -0.02 0.00 0.03 0.00 0.02
## O5 O6 O7 O8 O9 O10
## E1 0.01 0.01 0.00 0.00 -0.01 0.00
## E2 0.01 0.01 0.00 0.00 0.01 0.01
## E3 0.00 0.00 0.02 -0.01 -0.01 -0.01
## E4 0.01 0.01 0.00 0.00 0.00 0.00
## E5 0.00 0.01 0.00 -0.01 0.02 0.01
## E6 0.01 0.01 0.00 0.00 -0.01 0.00
## E7 0.00 0.01 0.01 0.00 0.02 0.01
## E8 0.00 0.00 0.03 -0.01 0.00 0.01
## E9 0.00 0.01 0.01 0.00 0.02 -0.01
## E10 -0.01 -0.01 -0.01 0.00 0.01 -0.01
## N1 0.01 0.00 0.00 0.00 -0.01 0.00
## N2 0.00 -0.01 0.00 0.00 0.02 -0.01
## N3 -0.01 0.01 0.02 -0.01 0.02 -0.01
## N4 -0.01 0.00 0.00 0.01 0.01 0.00
## N5 0.02 0.00 0.00 0.01 0.00 -0.01
## N6 0.00 -0.01 0.01 0.00 -0.01 -0.01
## N7 0.00 0.00 0.00 0.00 0.00 0.00
## N8 0.00 0.00 -0.01 0.00 0.00 0.00
## N9 -0.01 -0.01 0.01 0.00 0.01 -0.01
## N10 -0.01 0.03 0.01 -0.01 0.04 0.02
## A1 -0.01 0.00 0.04 0.00 -0.01 -0.01
## A2 0.01 0.01 -0.01 0.00 0.01 0.00
## A3 0.00 0.02 -0.01 0.02 0.00 0.00
## A4 0.00 0.00 0.00 0.00 0.00 0.00
## A5 0.00 0.00 0.01 -0.01 0.02 0.00
## A6 0.01 0.00 -0.01 0.01 0.00 0.00
## A7 -0.02 0.01 0.01 -0.01 0.02 0.00
## A8 -0.01 0.00 0.00 0.01 0.01 0.01
## A9 -0.01 0.00 0.01 0.00 0.00 0.00
## A10 0.00 0.00 0.02 -0.01 0.02 -0.01
## C1 0.00 -0.01 0.01 -0.01 -0.02 -0.01
## C2 -0.02 -0.01 0.02 -0.01 0.01 -0.02
## C3 -0.02 0.01 0.04 -0.01 0.01 -0.02
## C4 -0.02 0.01 -0.01 0.00 0.00 0.01
## C5 -0.01 0.01 0.00 0.01 -0.02 0.01
## C6 -0.02 -0.01 0.01 -0.01 -0.01 -0.01
## C7 -0.01 0.01 -0.01 0.00 0.04 0.00
## C8 0.01 0.01 0.01 0.00 0.00 0.01
## C9 -0.01 -0.01 -0.02 0.00 0.01 0.00
## C10 -0.03 0.00 0.03 0.00 0.01 -0.02
## O1 0.02 -0.01 0.00 0.01 -0.01 0.00
## O2 0.03 -0.01 -0.09 0.02 -0.03 0.03
## O3 -0.01 -0.01 0.01 0.00 0.01 0.00
## O4 0.04 -0.01 0.00 0.01 -0.06 0.02
## O5 0.00 0.00 -0.01 0.01 -0.02 0.04
## O6 0.00 0.00 0.00 0.00 0.03 0.00
## O7 -0.01 0.00 0.00 -0.02 -0.01 -0.03
## O8 0.01 0.00 -0.02 0.00 -0.01 0.01
## O9 -0.02 0.03 -0.01 -0.01 0.00 0.00
## O10 0.04 0.00 -0.03 0.01 0.00 0.00
Very good - just a bit of crumbs!
OK - so we have done a quick & dirty factor analyis - just to get the general prinicples in place. We now expand with more detail.
##C. Example 2: Choosing the number of factors, etc…
For the second example, we use a smaller data set.
This is simulated data - modeled after a private data set. There are 2 samples in the data - designated by id
.
#Reading the data from web location
#set filepath for data file
filepath <- "../data/ptechdata.csv"
#read in the .csv file using the url() function
pdat <- read.csv(file=filepath,header=TRUE)
Lets split the data and remove the id variable
#splitting data
pdat1 <- pdat[pdat$id==1,-1]
pdat2 <- pdat[pdat$id==2,-1]
Lets have a quick look at the first sample and the descriptives.
#data structure
head(pdat1,10)
## v1 v2 v3 v4 v5 v6 v7 v8 v9
## 1 -0.84 -0.27 -0.59 -0.97 -0.72 -1.86 1.11 0.46 0.09
## 2 -0.04 -0.33 -0.54 2.57 1.30 0.59 1.42 2.56 0.66
## 3 0.34 -0.23 0.99 -1.84 -1.62 -1.55 1.05 0.22 0.60
## 4 -1.01 -1.96 -1.17 -2.93 -1.75 -1.89 -0.51 -0.07 1.14
## 5 2.02 0.21 0.97 0.13 -0.01 -0.88 -1.22 0.54 -0.28
## 6 -0.24 -0.19 0.23 0.80 1.06 1.61 1.31 -1.10 0.26
## 7 -0.61 -1.37 0.15 -0.68 -1.50 -0.44 -1.63 1.40 1.79
## 8 -1.26 -2.59 -1.10 -0.40 -0.66 0.29 -1.45 -1.06 0.15
## 9 0.23 0.25 -0.21 0.23 -0.42 1.01 0.15 1.16 -0.36
## 10 1.01 -0.08 1.95 1.14 -0.06 -0.48 -0.62 -1.27 -0.08
#descriptives
describe(pdat1)
## vars n mean sd median trimmed mad min max range skew kurtosis
## v1 1 100 0.00 0.95 0.02 0.00 0.96 -2.33 2.44 4.77 0.04 -0.41
## v2 2 100 -0.14 0.97 -0.11 -0.12 0.90 -2.59 2.07 4.66 -0.21 -0.21
## v3 3 100 0.04 0.91 0.09 0.08 0.90 -3.11 2.10 5.21 -0.46 0.72
## v4 4 100 -0.13 0.93 -0.06 -0.11 0.93 -2.93 2.57 5.50 -0.15 0.21
## v5 5 100 -0.18 0.85 -0.29 -0.20 0.83 -2.04 1.75 3.79 0.25 -0.31
## v6 6 100 -0.01 0.98 0.06 0.01 0.81 -2.37 2.24 4.61 -0.21 -0.34
## v7 7 100 0.12 0.94 0.12 0.12 1.02 -1.91 2.14 4.05 0.04 -0.68
## v8 8 100 -0.03 1.04 0.00 -0.03 0.93 -2.58 2.56 5.14 -0.05 -0.32
## v9 9 100 0.17 0.96 0.26 0.18 0.93 -2.54 2.47 5.01 -0.20 -0.17
## se
## v1 0.10
## v2 0.10
## v3 0.09
## v4 0.09
## v5 0.09
## v6 0.10
## v7 0.09
## v8 0.10
## v9 0.10
Data appear to already be in standardized form.
Lets look at the raw data.
pairs.panels(pdat1)
The research question is - can these data be represented by a smaller number of factors?
Store and examine the correlation matrices
#correlation matrix
round(cor(pdat1),2)
## v1 v2 v3 v4 v5 v6 v7 v8 v9
## v1 1.00 0.66 0.71 0.14 0.21 0.05 -0.02 0.07 0.03
## v2 0.66 1.00 0.61 0.13 0.16 0.16 0.03 -0.03 0.02
## v3 0.71 0.61 1.00 0.14 0.13 0.11 -0.12 0.00 -0.03
## v4 0.14 0.13 0.14 1.00 0.49 0.52 0.18 0.14 0.10
## v5 0.21 0.16 0.13 0.49 1.00 0.38 0.24 0.09 0.16
## v6 0.05 0.16 0.11 0.52 0.38 1.00 0.04 0.15 -0.03
## v7 -0.02 0.03 -0.12 0.18 0.24 0.04 1.00 0.40 0.29
## v8 0.07 -0.03 0.00 0.14 0.09 0.15 0.40 1.00 0.26
## v9 0.03 0.02 -0.03 0.10 0.16 -0.03 0.29 0.26 1.00
corrplot(cor(pdat1), order = "original", tl.col='black', tl.cex=.75)
We see three “groups” of variables that are positively correlated. This gives us hope.
Traditionally, EFA was an analysis of a correlation matrix. Most programs now can also read the raw data directly. We make the correlation matrix to be explicit (and so that we know how that matrix was made - e.g, how the missing data were treated). #Store the correlation matrix of the data into an object
corpdat1 <- cor(pdat1, use="pairwise.complete.obs")
corpdat1
## v1 v2 v3 v4 v5 v6
## v1 1.00000000 0.65976178 0.707293038 0.1384304 0.21243923 0.04765664
## v2 0.65976178 1.00000000 0.611290349 0.1317872 0.16188108 0.16125106
## v3 0.70729304 0.61129035 1.000000000 0.1373615 0.12634369 0.10552785
## v4 0.13843038 0.13178718 0.137361546 1.0000000 0.48822168 0.51674523
## v5 0.21243923 0.16188108 0.126343694 0.4882217 1.00000000 0.37730021
## v6 0.04765664 0.16125106 0.105527848 0.5167452 0.37730021 1.00000000
## v7 -0.02354195 0.02976057 -0.116982880 0.1808370 0.24081229 0.03741838
## v8 0.06859518 -0.03458348 0.002804632 0.1398046 0.08966386 0.15383876
## v9 0.02845927 0.02415579 -0.029471278 0.1026108 0.15878760 -0.02887585
## v7 v8 v9
## v1 -0.02354195 0.068595180 0.02845927
## v2 0.02976057 -0.034583485 0.02415579
## v3 -0.11698288 0.002804632 -0.02947128
## v4 0.18083704 0.139804599 0.10261085
## v5 0.24081229 0.089663855 0.15878760
## v6 0.03741838 0.153838758 -0.02887585
## v7 1.00000000 0.401410299 0.29346736
## v8 0.40141030 1.000000000 0.25623468
## v9 0.29346736 0.256234679 1.00000000
We can inform our choice of number of factors with a number of functions. We can use fa.parallel()
in the psych
package, or the nScree()
function in the nScree
package.
#parallel analysis for number of factors
fa.parallel(x=corpdat1, fm="minres", fa="fa")
## Warning in fa.parallel(x = corpdat1, fm = "minres", fa = "fa"): It seems as
## if you are using a correlation matrix, but have not specified the number of
## cases. The number of subjects is arbitrarily set to be 100
## Parallel analysis suggests that the number of factors = 3 and the number of components = NA
#multiple methods for number of factors
nScree(x=corpdat1,model="factors")
## noc naf nparallel nkaiser
## 1 3 3 3 3
plot(nScree(x=corpdat1,model="factors"))
The output here is number of components/factors according to optimal coordinates (noc), acceleration factor (naf), parallel analysis (nparallel), and Kaiser rule (nkaiser).
For these data - everything points to choice of 3 factors.
Now lets run the factor analysis. This time we use the fa()
in the psych
package, with oblique oblimin rotation (rotate=“oblimin”) and principal factor extraction (fm=“pa”).
EFApdat1_3factor <- fa(r = corpdat1, nfactors = 3,
rotate = "oblimin",
fm = "pa")
EFApdat1_3factor
## Factor Analysis using method = pa
## Call: fa(r = corpdat1, nfactors = 3, rotate = "oblimin", fm = "pa")
## Standardized loadings (pattern matrix) based upon correlation matrix
## PA1 PA2 PA3 h2 u2 com
## v1 0.90 -0.04 0.06 0.79 0.21 1.0
## v2 0.74 0.05 0.00 0.56 0.44 1.0
## v3 0.80 0.02 -0.10 0.66 0.34 1.0
## v4 0.00 0.78 0.04 0.62 0.38 1.0
## v5 0.09 0.54 0.15 0.38 0.62 1.2
## v6 -0.03 0.70 -0.10 0.46 0.54 1.0
## v7 -0.03 0.01 0.73 0.54 0.46 1.0
## v8 0.02 0.04 0.51 0.27 0.73 1.0
## v9 0.03 -0.03 0.45 0.20 0.80 1.0
##
## PA1 PA2 PA3
## SS loadings 2.01 1.41 1.07
## Proportion Var 0.22 0.16 0.12
## Cumulative Var 0.22 0.38 0.50
## Proportion Explained 0.45 0.31 0.24
## Cumulative Proportion 0.45 0.76 1.00
##
## With factor correlations of
## PA1 PA2 PA3
## PA1 1.00 0.21 -0.02
## PA2 0.21 1.00 0.26
## PA3 -0.02 0.26 1.00
##
## Mean item complexity = 1
## Test of the hypothesis that 3 factors are sufficient.
##
## The degrees of freedom for the null model are 36 and the objective function was 2.55
## The degrees of freedom for the model are 12 and the objective function was 0.15
##
## The root mean square of the residuals (RMSR) is 0.03
## The df corrected root mean square of the residuals is 0.06
##
## Fit based upon off diagonal values = 0.99
## Measures of factor score adequacy
## PA1 PA2 PA3
## Correlation of (regression) scores with factors 0.94 0.87 0.81
## Multiple R square of scores with factors 0.88 0.76 0.66
## Minimum correlation of possible factor scores 0.75 0.51 0.32
The solution looks pretty good.
Our objective here was data reduction. To make that explicit, we can obtain the factor scores by inputing the raw data matrix instead of the correlation matrix. Additionally, we can specify the ‘scores’ argument as below to get factor scores by a factor score regression method. To get estimated factor scores we must input the raw data.
EFApdat1_3factor <- fa(r = pdat1, nfactors = 3,
rotate = "oblimin",
fm = "pa",
scores="regression")
head(EFApdat1_3factor$scores,10)
## PA1 PA2 PA3
## 1 -0.783420678 -1.1506737 0.5983783
## 2 -0.262502699 2.1004885 1.8211517
## 3 0.433115912 -1.7226209 0.3998862
## 4 -1.419724776 -2.6307726 -0.3797518
## 5 1.476386714 -0.1114002 -0.6023405
## 6 0.007833174 1.3577895 0.5681540
## 7 -0.614527322 -0.8404476 -0.5418789
## 8 -1.578440465 -0.3701222 -1.1402610
## 9 0.122523810 0.5020814 0.1907809
## 10 1.232518910 0.5499773 -0.7593508
NOTE: We do have factor score indeterminacy! So, be careful.
Lets look at the “reduced” data.
pairs.panels(EFApdat1_3factor$scores)
But do not forget that there are also unique factors too. The factors only capture common variance. There may be quite a bit of stuff left over.
Remember that the variance accounted for by the 3 factors is only part of the total variance. Specifically, 0.499181, which we see in the main output
EFApdat1_3factor$Vaccounted[3,3]
## [1] 0.499181
All the other parts are in the uniquenesses and misfit.
#Uniquenesses
round(EFApdat1_3factor$uniquenesses,3)
## v1 v2 v3 v4 v5 v6 v7 v8 v9
## 0.209 0.441 0.336 0.379 0.617 0.541 0.458 0.726 0.801
#residuals (diagonal removed)
round(EFApdat1_3factor$residual - EFApdat1_3factor$uniquenesses,3)
## v1 v2 v3 v4 v5 v6 v7 v8 v9
## v1 0.000 -0.210 -0.214 -0.200 -0.174 -0.246 -0.235 -0.182 -0.220
## v2 -0.443 0.000 -0.434 -0.467 -0.458 -0.399 -0.393 -0.498 -0.435
## v3 -0.341 -0.328 0.000 -0.324 -0.359 -0.334 -0.354 -0.301 -0.338
## v4 -0.371 -0.404 -0.368 0.000 -0.366 -0.386 -0.380 -0.394 -0.365
## v5 -0.581 -0.633 -0.640 -0.603 0.000 -0.622 -0.590 -0.701 -0.576
## v6 -0.579 -0.499 -0.539 -0.548 -0.547 0.000 -0.568 -0.455 -0.589
## v7 -0.484 -0.410 -0.476 -0.458 -0.431 -0.484 0.000 -0.440 -0.490
## v8 -0.699 -0.783 -0.690 -0.741 -0.810 -0.639 -0.708 0.000 -0.701
## v9 -0.812 -0.795 -0.803 -0.787 -0.761 -0.848 -0.834 -0.776 0.000
####Intersample comparisons -
We can look at the comparison of the factor solutions in a second sample (e.g., cross-validation).
Lets run the factor analysis on our second sample, pdat2
. First we should check if the number of factors is the same.
#correlation matrix
round(cor(pdat2),2)
## v1 v2 v3 v4 v5 v6 v7 v8 v9
## v1 1.00 0.78 0.79 0.21 0.05 0.24 -0.04 -0.13 -0.13
## v2 0.78 1.00 0.69 0.11 0.14 0.26 -0.01 -0.07 -0.15
## v3 0.79 0.69 1.00 0.19 0.01 0.23 0.01 -0.03 -0.11
## v4 0.21 0.11 0.19 1.00 0.49 0.55 0.39 0.29 0.32
## v5 0.05 0.14 0.01 0.49 1.00 0.47 0.30 0.09 0.28
## v6 0.24 0.26 0.23 0.55 0.47 1.00 0.28 0.12 0.31
## v7 -0.04 -0.01 0.01 0.39 0.30 0.28 1.00 0.56 0.52
## v8 -0.13 -0.07 -0.03 0.29 0.09 0.12 0.56 1.00 0.44
## v9 -0.13 -0.15 -0.11 0.32 0.28 0.31 0.52 0.44 1.00
corrplot(cor(pdat2), order = "original", tl.col='black', tl.cex=.75)
#parallel analysis for number of factors
fa.parallel(x=pdat2, fm="minres", fa="fa")
## Parallel analysis suggests that the number of factors = 2 and the number of components = NA
#multiple methods for number of factors
nScree(x=pdat2,model="factors")
## noc naf nparallel nkaiser
## 1 2 2 2 3
plot(nScree(x=pdat2,model="factors"))
Hmmm… that is a bit problematic for the intersample comparison. The information points towards 2 factors. What are those eigen values?
eigen(cor(pdat2))$values
## [1] 2.9515136 2.5756903 1.1183328 0.5704920 0.5448644 0.4283432 0.3945002
## [8] 0.2616947 0.1545689
Hmm… Ok lets look at the 2-factor and 3-factor solutions.
#2-factor model
EFApdat2_2factor <- fa(r = pdat1, nfactors = 2,
rotate = "oblimin",
fm = "pa",
scores="regression")
EFApdat2_2factor
## Factor Analysis using method = pa
## Call: fa(r = pdat1, nfactors = 2, rotate = "oblimin", scores = "regression",
## fm = "pa")
## Standardized loadings (pattern matrix) based upon correlation matrix
## PA1 PA2 h2 u2 com
## v1 0.85 0.02 0.724 0.28 1.0
## v2 0.74 0.05 0.564 0.44 1.0
## v3 0.84 -0.05 0.687 0.31 1.0
## v4 0.02 0.70 0.496 0.50 1.0
## v5 0.06 0.63 0.418 0.58 1.0
## v6 0.02 0.52 0.280 0.72 1.0
## v7 -0.18 0.43 0.179 0.82 1.3
## v8 -0.10 0.36 0.122 0.88 1.2
## v9 -0.09 0.28 0.072 0.93 1.2
##
## PA1 PA2
## SS loadings 2.00 1.54
## Proportion Var 0.22 0.17
## Cumulative Var 0.22 0.39
## Proportion Explained 0.57 0.43
## Cumulative Proportion 0.57 1.00
##
## With factor correlations of
## PA1 PA2
## PA1 1.00 0.24
## PA2 0.24 1.00
##
## Mean item complexity = 1.1
## Test of the hypothesis that 2 factors are sufficient.
##
## The degrees of freedom for the null model are 36 and the objective function was 2.55 with Chi Square of 242.79
## The degrees of freedom for the model are 19 and the objective function was 0.48
##
## The root mean square of the residuals (RMSR) is 0.09
## The df corrected root mean square of the residuals is 0.12
##
## The harmonic number of observations is 100 with the empirical chi square 53.55 with prob < 3.9e-05
## The total number of observations was 100 with Likelihood Chi Square = 44.91 with prob < 0.00071
##
## Tucker Lewis Index of factoring reliability = 0.759
## RMSEA index = 0.123 and the 90 % confidence intervals are 0.073 0.162
## BIC = -42.59
## Fit based upon off diagonal values = 0.9
## Measures of factor score adequacy
## PA1 PA2
## Correlation of (regression) scores with factors 0.93 0.85
## Multiple R square of scores with factors 0.86 0.72
## Minimum correlation of possible factor scores 0.72 0.44
#3-factor model
EFApdat2_3factor <- fa(r = pdat1, nfactors = 3,
rotate = "oblimin",
fm = "pa",
scores="regression")
EFApdat2_3factor
## Factor Analysis using method = pa
## Call: fa(r = pdat1, nfactors = 3, rotate = "oblimin", scores = "regression",
## fm = "pa")
## Standardized loadings (pattern matrix) based upon correlation matrix
## PA1 PA2 PA3 h2 u2 com
## v1 0.90 -0.04 0.06 0.79 0.21 1.0
## v2 0.74 0.05 0.00 0.56 0.44 1.0
## v3 0.80 0.02 -0.10 0.66 0.34 1.0
## v4 0.00 0.78 0.04 0.62 0.38 1.0
## v5 0.09 0.54 0.15 0.38 0.62 1.2
## v6 -0.03 0.70 -0.10 0.46 0.54 1.0
## v7 -0.03 0.01 0.73 0.54 0.46 1.0
## v8 0.02 0.04 0.51 0.27 0.73 1.0
## v9 0.03 -0.03 0.45 0.20 0.80 1.0
##
## PA1 PA2 PA3
## SS loadings 2.01 1.41 1.07
## Proportion Var 0.22 0.16 0.12
## Cumulative Var 0.22 0.38 0.50
## Proportion Explained 0.45 0.31 0.24
## Cumulative Proportion 0.45 0.76 1.00
##
## With factor correlations of
## PA1 PA2 PA3
## PA1 1.00 0.21 -0.02
## PA2 0.21 1.00 0.26
## PA3 -0.02 0.26 1.00
##
## Mean item complexity = 1
## Test of the hypothesis that 3 factors are sufficient.
##
## The degrees of freedom for the null model are 36 and the objective function was 2.55 with Chi Square of 242.79
## The degrees of freedom for the model are 12 and the objective function was 0.15
##
## The root mean square of the residuals (RMSR) is 0.03
## The df corrected root mean square of the residuals is 0.06
##
## The harmonic number of observations is 100 with the empirical chi square 7.48 with prob < 0.82
## The total number of observations was 100 with Likelihood Chi Square = 14.19 with prob < 0.29
##
## Tucker Lewis Index of factoring reliability = 0.967
## RMSEA index = 0.051 and the 90 % confidence intervals are 0 0.116
## BIC = -41.07
## Fit based upon off diagonal values = 0.99
## Measures of factor score adequacy
## PA1 PA2 PA3
## Correlation of (regression) scores with factors 0.94 0.87 0.81
## Multiple R square of scores with factors 0.88 0.76 0.66
## Minimum correlation of possible factor scores 0.75 0.51 0.32
Let’s go with the 3 factor solution. It looks a bit better all around.
With the same size p x q factor loading matrix for the two samples (here 9 x 3), we can compare the pattern of loadings between the two samples using the Tucker Index of Factor Congruence.
This is easily obatined by applying the factor.congruence
function in the psych
package to two factor loading matrices.
fa.congruence(EFApdat1_3factor,EFApdat2_3factor)
## PA1 PA2 PA3
## PA1 1.00 0.03 0.00
## PA2 0.03 1.00 0.04
## PA3 0.00 0.04 1.00
We see very good alignment across the two samples!
We’ve done something clever here to make a point. These two samples are actually two different persons, each of whom completed 100 days of reports (repeated measures). We have actually conducted two person-specific factor analyses. The mechanics of cross-sectional factor analysis (R-technique) and (P-technique) are identical - just the data and interpretation are different.
Our data reduction has allowed us to reduce the complexity of the 9-dimensional data.
#preparing data
day <- 1:100
str(day)
## int [1:100] 1 2 3 4 5 6 7 8 9 10 ...
pdat1_plot <- cbind(day,pdat1,EFApdat1_3factor$scores)
#Plotting observed scores
ggplot(data=pdat1_plot, aes(x=day)) +
geom_line(aes(y=v1), color= 1) +
geom_line(aes(y=v2), color= 2) +
geom_line(aes(y=v3), color= 3) +
geom_line(aes(y=v4), color= 4) +
geom_line(aes(y=v5), color= 5) +
geom_line(aes(y=v6), color= 6) +
geom_line(aes(y=v7), color= 7) +
geom_line(aes(y=v8), color= 8) +
geom_line(aes(y=v9), color= 9) +
xlab("Day") + ylab("Observed Score") +
scale_x_continuous(limits=c(0,100)) +
scale_y_continuous(limits=c(-3,3))
to 3-dimensional data - by setting aside 50% of the variance.
#Plotting factor scores
ggplot(data=pdat1_plot, aes(x=day)) +
geom_line(aes(y=PA1), color= 1) +
geom_line(aes(y=PA2), color= 2) +
geom_line(aes(y=PA3), color= 3) +
xlab("Day") + ylab("Factor Score") +
scale_x_continuous(limits=c(0,100)) +
scale_y_continuous(limits=c(-3,3))
####Thanks for playing!