## Factor Analysis

 An introduction
## WITH ADDITIONAL MATERIALS AT

https://quantdev.ssri.psu.edu/tutorials

Nilam Ram<br>Pennsylvania State University

## What is Factor Analysis?

- Method for investigating the structure underlying variables (or people, or time)
- a set of computational techniques widely used in research on individual differences
- a mathematical model used to express observations in terms of latent variables

$$
\begin{aligned}
Y_{n} & =\lambda f_{n}+u_{n} \\
\Sigma & =\Lambda \Psi \Lambda^{\prime}+\theta_{\varepsilon}
\end{aligned}
$$



## Factor Analysis: An Introduction

- What is Factor Analysis?
- Uses and Applications
- Exploratory Factor Analysis (EFA)
- 5 Steps
- Example
- Confirmatory Factor Analysis (CFA)
- 5 Steps
- Example
- Evaluating Model Fit
- Practical Issues


## 100+ years of Factor Analysis

- Beginnings: Spearman (1904)
- "One factor theory of intelligence"
- Early Years and Transformations: C. Burt, L.L. Thurstone, H. Kaiser, R. B. Cattell, etc.
- Methods for factor extraction
- The number of factors
- The meaning of factors
- Factor rotation methods
- A Revolution: Joreskog (1970s)
- Confirmatory Factor Analysis and SEM

$$
\text { Response }=\{\text { stimulus }\}+\text { error }
$$

- The fundamental model of Factor Analysis can be seen as a direct descendant of other models in common usage:

In ANOVA the stimulus is fixed

$$
X \longrightarrow Y \quad Y_{n}=X+u_{n}
$$

In Regression the stimulus is random

$$
C X \xrightarrow{\beta} \quad Y_{n}=\beta X_{n}+u_{n}
$$

In Factor Analysis the stimulus is latent

$$
\rightarrow \xrightarrow{\lambda} \xrightarrow{Y} \quad Y_{n}=\lambda f_{n}+u_{n}
$$

## Factors - Abstract/Latent Variables

- a set of theoretical concepts used to describe hypothetical constructs
- represent testable (i.e., rejectable) hypotheses about empirical data

- "Factors are not things - only evidence for the existence of things" (Cattell, 1966)


## Observed/Manifest Variables

- A set of empirical observations - data - usually collected with a purpose (theory)


Arp, 1916

A Hypothetical Factor Space


## A Multi-Factor Space



## A Set of Multivariate Measurements

(Lebo \& Nesselroade, 1978)

| $N=103$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# of vars $=6$ |  |  |  |  |  |  |
| obs\# | active | lively | peppy | sluggish | tired | weary |
| 1 | 1 | 1 | 1 | 0 | 1 | 0 |
| 2 | 1 | 1 | 0 | 0 | 1 | 0 |
| 3 | 1 | 1 | 0 | 0 | 2 | 1 |
| 4 | 2 | 1 | 1 | 0 | 0 | 0 |
| 5 | 1 | 1 | 1 | 0 | 0 | 0 |
| 6 | 2 | 1 | 1 | 0 | 0 | 0 |
| 7 | 1 | 1 | 0 | 0 | 1 | 1 |
| 8 | 1 | 1 | 0 | 0 | 1 | 1 |
| 9 | 1 | 1 | 1 | 0 | 0 | 0 |
| 10 | 2 | 1 | 0 | 0 | 0 | 0 |

## The Common Factor Model

- If two or more characteristics correlate they may reflect a shared underlying trait. Patterns of correlations reveal the latent dimensions that lie beneath the measured qualities (Tabachnik \& Fidel, 2005)
- Aim of factor analysis is to represent the covariation among observed variables in terms of linear relations among a smaller number of abstract or latent variables (Cattell, 1988).

A Set of Multivariate Measurements Summarized as a Correlation Matrix

|  | Active | Lively | Peppy | Slugg | Tired | Weary |
| :--- | ---: | ---: | :---: | :---: | :---: | :---: |
| Active | 1.00 |  |  |  |  |  |
| Lively | .64 | 1.00 |  |  |  |  |
| Peppy | .56 | .41 | 1.00 |  |  |  |
| Sluggish | -.48 | -.35 | -.42 | 1.00 |  |  |
| Tired | -.47 | -.42 | -.47 | .72 | 1.00 |  |
| Weary | -.43 | -.43 | -.44 | .64 | .83 | 1.00 |

## A Multivariate Space



|  | Active | Lively | Peppy | Slugg | Tired | Weary |
| :--- | ---: | ---: | :---: | :---: | :---: | :---: |
| Active | 1.00 |  |  |  |  |  |
| Lively | .64 | 1.00 |  |  |  |  |
| Peppy | .56 | .41 | 1.00 |  |  |  |
| Sluggish | -.48 | -.35 | -.42 | 1.00 |  |  |
| Tired | -.47 | -.42 | -.47 | .72 | 1.00 |  |
| Weary | -.43 | -.43 | -.44 | .64 | .83 | 1.00 |

## Data Reduction - <br> Parsimonious Representation of the Data

-. 63


## The Common Factor Model

$$
Y_{n}=\lambda f_{n}+u_{n}
$$



- The relations among these six items can be parsimoniously represented by the relation between two common factors (+ unique parts)


## SEM Path Diagrams AKey

## Y Squares = Observed Variables

f Circles = Latent Variables
$\curvearrowright$ $\qquad$ Double-Headed Arrows = Variances/Covariances
$\longrightarrow$ Single-Headed Arrows $=$ Regressions

## Use \& Application of Factor Analysis

- Inform evaluations of construct or test validity
- Does this set of items/variables tap into a single or multiple constructs?
- How many constructs do we need to explain the pattern of responses in this study sample?
- Identify groups of interrelated items/variables
- Which items are related to one another?
- If individuals score relatively high on one item, on what other items are they also likely to score relatively high?
- Developing or testing a theory regarding hypothetical constructs
- What underlying constructs did we measure and how do they relate to one another?
- Did we measure the constructs we intended to measure? Do the constructs relate to one another in the hypothesized manner?
- Summarize relationships as a more parsimonious set of factors - that may then be used in additional analyses


## The Common Factor Model



$$
Y_{n}=\lambda f_{n}+u_{n}
$$

EFA Steps
EFA Example

## Exploratory Factor Analysis (EFA)

- Used to examine the dimensionality of a measurement instrument or set of variables
- Data-driven
- Post-hoc examination of what structures may underlie the data
- What factors (common and unique) were measured
- Number of underlying factors (dimensions)
- Inter-relations among factors
- Finding the smallest number of interpretable factors needed to explain the correlations among a set of variables - within constraints of the model


## Step 1: Select Data

C Q1 Am always prepared
N Q2 Get stressed out easily

- Q3 Have a rich vocabulary

N Q4 Am relaxed most of the time
Q5 Pay attention to details
A 20 item trait personality scale

Q6 Pay attention to deta
Q6 Worry about things
Q7 Make a mess of th
N Q8 Seldom feel blue
C Q9 Get chores done right away
N Q10 Am easily disturbed
C Q11 Often forget to put things back in their proper place
N Q12 Get upset easily
C Q13 Like order
N Q14 Change my mood a lot
C Q15 Shirk my duties
N Q16 Have frequent mood swings
C Q17 Follow a schedule
N Q18 Get irritated easily
C Q19 Am exacting in my work
N Q20 Often feel blue
Selection of data is not "blind"
Scale intended to measure
something
Q3 is filler item

## 5 Steps of EFA

1. Select data for factor analysis
2. Extract a set of factors sequentially using a set of optimization criteria

- Principal axis

3. Select a smaller number of common factors for ease in interpretation

- Scree test, Eigenvalues > 1

4. Rotate selected factors towards an interpretable solution

- Orthogonal (Varimax), Oblique (promax), Target (Procrustes)

5. *Estimate factor scores using another set of criteria

- Sum scores


## Step 1: Select Data

| id | q1 | q2 | q3 | q4 | q5 $\ldots$ |
| ---: | ---: | ---: | ---: | ---: | ---: | :--- |
| 150 | 5 | 1 | 4 | 3 | 1 |
| 151 | 4 | 4 | 4 | 3 | 4 |
| 153 | 3 | 2 | 3 | 4 | 4 |
| 155 | 4 | 3 | 3 | 3 | 3 |
| 156 | 2 | 1 | 2 | 1 | 4 |
| 157 | 3 | 2 | 2 | 3 | 3 |
| 158 | 2 | 3 | 3 | 2 | 3 |
| 159 | 5 | 1 | 5 | 1 | 5 |
| 160 | 3 | 4 | 5 | 1 | 3 |
| 161 | 5 | 5 | 4 | 1 | 5 |
| 162 | 4 | 3 | 3 | 2 | 4 |
| 163 | 4 | 4 | 2 | 2 | 4 |

## Step 2: Extract Factors

Principal Axis

- SAS

PROC FACTOR DATA=synpers
METHOD=PRINIT MAXITER=100 CORR
ROTATE=PROMAX
SCREE NFACT=2 /*MINEIGEN=1*/ REORDER ;
TITLE 'Exploratory 2-Factor Analysis of IPIP Items';
VAR q1-q2 q4-q20;
RUN;

- SPSS
- Analyze $\rightarrow$ Data Reduction $\rightarrow$ Factor
- Select variables
- R
$\mathrm{m} 1<-\mathrm{fa}(\mathrm{r}=$ synpers, nfactors=2, rotate="promax" fm="pa")
- **Extraction - Method: Principal Axis Factoring

Rotation: Promax
Principal axes factor analysis has a long history in exploratory analysis and is a straightforward procedure. Successive eigen value decompositions are done on a correlation matrix with the diagonal replaced with diag (FF') until $\sum\left(\operatorname{diag}\left(F F^{\prime}\right)\right.$ )does not change (very much).

## Step 4: Rotate Factor Solution for Interpretation

|  |  | Factor Loadings |  |
| :--- | :--- | :---: | :---: |
|  |  | $\mathbf{1}$ | $\mathbf{2}$ |
| q1 | Am always prepared | -0.111 | $\mathbf{0 . 5 8 6}$ |
| q2 | Get stressed out easily | $\mathbf{0 . 5 7 2}$ | 0.038 |
| q4 | Am relaxed most of the time | $\mathbf{0 . 5 4 4}$ | 0.088 |
| q5 | Pay attention to details | 0.014 | $\mathbf{0 . 3 2 5}$ |
| q6 | Worry about things | $\mathbf{0 . 5 6 2}$ | 0.051 |
| q7 | Make a mess of things | $\mathbf{- 0 . 3 2 1}$ | $\mathbf{0 . 3 8 8}$ |
| q8 | Seldom feel blue | $\mathbf{0 . 6 2 4}$ | -0.075 |
| q9 | Get chores done right away | -0.157 | $\mathbf{0 . 6 6 6}$ |
| q10 | Am easily disturbed | $\mathbf{0 . 5 2 8}$ | -0.044 |
| q11 | Often forget to put things ... | -0.021 | $\mathbf{0 . 5 0 7}$ |
| q12 | Get upset easily | $\mathbf{0 . 7 5 2}$ | -0.004 |
| q13 | Like order | -0.014 | $\mathbf{0 . 5 5 6}$ |
| q14 | Change my mood a lot | $\mathbf{0 . 5 7 8}$ | -0.229 |
| q15 | Shirk my duties | -0.136 | $\mathbf{0 . 5 2 6}$ |
| q16 | Have frequent mood swings | $\mathbf{0 . 6 0 0}$ | -0.288 |
| q17 | Follow a schedule | -0.049 | $\mathbf{0 . 7 0 7}$ |
| q18 | Get iritated easily | $\mathbf{0 . 7 3 5}$ | -0.153 |
| q19 | Am exacting in my work | 0.013 | $\mathbf{0 . 4 9 4}$ |
| q20 | Often feel blue | $\mathbf{0 . 6 4 6}$ | -0.263 |

Factor Correlation
1.00

| -0.153 | 1.00 |
| :--- | :--- |

Conclusions:
Relations in data can be
represented by 2 interpretable
factors
Names of factors???
$\rightarrow$ Evidence that scale is
working in the intended
manner

## Step 5: *Calculate/Estimate Scores

Composite Scores

|  | id | Consc | Neuro |
| :---: | :---: | :---: | :---: |
| Consc $=q 1+q 5+q 7+q 9+q 11+$ | 150 | 28 | 22 |
| $q 13+q 15+q 17+q 19$ | 151 | 31 | 24 |
| Neuro $=q 2+q 4+q 6+q 10+q 12+$ | 153 | 34 | 22 |
| $q 14+q 16+q 18+q 20$ | 155 | 33 | 20 |
|  | 156 | 24 | 12 |
|  | 157 | 33 | 19 |
| 158 | 26 | 19 |  |
| 159 | 43 | 12 |  |
|  | 160 | 31 | 16 |
|  | 161 | 36 | 13 |
| 162 | 37 | 23 |  |
|  | 163 | 34 | 24 |

## Confirmatory Factor Analysis (CFA)

## CFA Steps \& Example

CFA Steps<br>CFA Example: Spearman 1904

## Confirmatory Factor Analysis (CFA)

- Testing an a-priori hypothesis about the structures in the data
- Requires specific expectations regarding
- The number of factors
- Which variables reflect given factors
- How the factors are related to one another
- Used to study how well a hypothesized structure fits to a sample of measurements
- Procrustes rotation
- Hypothesis-driven
- Explicitly test a priori hypotheses (theory) about the structures that underlie the data
- Number of , characteristics of, and interrelations among underlying factors
- Specify a common measurement base for comparisons across groups/occasions (factorial invariance)


## The Common Factor Model

- Goal:
- To represent the covariation among observed variables in terms of the linear relations between a smaller number of latent variables

$$
\Sigma=\Lambda \Psi \Lambda^{\prime}+\theta_{\varepsilon}
$$

where $\Sigma$ is the observed $p$-variate covariance matrix, $\Lambda$ is a $p \times q$ matrix of factor loadings,
$\Psi$ is a $q \times q$ latent factor covariance matrix,
$\theta_{\varepsilon}$ is a $p \times p$ covariance matrix of unique factors

## 5 Steps of CFA

0 . Theory-Data: Form some basic ideas of merging the common factor model and data

1. Draw a path diagram
2. Input observed covariance matrix $\Sigma$ (or raw data)
3. Specify "structural expectations"

- Number of factors
- Relationships among factors
- Relationships among observed variables and factors

4. Estimate parameters

- Maximum likelihood estimation in SEM framework

5. Evaluate parameters and fit of model

## 1. A "One Factor Theory"



$$
Y_{n}=\lambda f_{n}+u_{n}
$$

## CFA Example: Step 0 <br> The Birth of Factor Analysis, 1904

- "All branches of intellectual activity have in common one fundamental function (or group of functions) whereas the remaining or specific elements of the activity seem in every case to be wholly different from that in all others" (Spearman, 1904, p. 284)
- One-factor theory of intelligence
- General intellectual ability (common factor)
- Ability specific to each task or skill (unique factors)

2. Input Covariance Matrix

$$
\Sigma=\Lambda \Psi \Lambda^{\prime}+\theta_{\varepsilon}
$$

$\Sigma=$ Observed $\frac{\text { Covariance }}{(\mathrm{p} \times \mathrm{p})}$ (Correlation) Matrix

| N=101 |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
|  | C | F | E | M | P | T |
| Classics | 1.00 |  |  |  |  |  |
| French | .83 | 1.00 |  |  |  |  |
| English | .78 | .67 | 1.00 |  |  |  |
| Math | .70 | .67 | .64 | 1.00 |  |  |
| Pitch | .66 | .65 | .54 | .45 | 1.00 |  |
| Talent <br> (Music) | .63 | .57 | .51 | .51 | .40 | 1.00 |

## 3. Specify Structural Expectations

$$
\Sigma=\Lambda \Psi \Lambda^{\prime}+\theta_{\varepsilon}
$$

- \# of Factors
- 1 common +6 unique
- Relations among Factors
- Common factor is related to itself
- Factor Covariance Matrix = $\Psi$
- Common factor is unrelated to unique factors
- By definition of the common factor model
- Unique factors are unrelated to one another
- Uniquenesses $=\theta$
- Relations among observed variables and factors
- Common factor is indicated by all six observed variables
- Factor loading matrix $=\Lambda$

3. Specify Structural Expectations

$$
\Sigma=\Lambda \Psi \Lambda^{\prime}+\theta_{\varepsilon}
$$

$\theta_{\varepsilon}=$ Uniquenesses ( $\mathrm{p} \times \mathrm{p}$ )

|  | $\theta_{\varepsilon}=\underset{(p \times p)}{\text { Uniquenesses }}$ |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathbf{C}$ | $\mathbf{F}$ | $\mathbf{E}$ | $\mathbf{M}$ | $\mathbf{P}$ | $\mathbf{T}$ |
| Classics | $\mathbf{u}^{2}{ }_{1}$ |  |  |  |  |  |
| French | 0 | $\mathbf{u}^{2}{ }_{2}$ |  |  |  |  |
| English | 0 | 0 | $\mathbf{u}^{2}{ }_{3}$ |  |  |  |
| Math | 0 | 0 | 0 | $\mathbf{u}_{4}^{2}$ |  |  |
| Pitch | 0 | 0 | 0 | 0 | $\mathbf{u}^{2}{ }_{5}$ |  |
| Talent | 0 | 0 | 0 | 0 | 0 | $\mathbf{u}^{2}{ }_{6}$ |

3. Specify Structural Expectations

$$
\Sigma=\Lambda \Psi \Lambda^{\prime}+\theta_{\varepsilon}
$$

$\Lambda=$ Factor Loading Matrix
( $\mathrm{p} \times \mathrm{k}$ )
$\Psi=$ Factor Covariance Matrix

Factor $1=1.00$

|  | $\left(f_{1}\right)$ |
| :--- | :--- |
| Classics | $\lambda_{1}$ |
| French | $\lambda_{2}$ |
| English | $\lambda_{3}$ |
| Math | $\lambda_{4}$ |
| Pitch | $\lambda_{5}$ |
| Talent | $\lambda_{6}$ |

## Testing "Theory" of Measurement Directly

| Factor Loading Matrix |  | Neuro | Consc |
| :---: | :---: | :---: | :---: |
| q1 | Am always prepared | --- | ??? |
| q2 | Get stressed out easily | ??? | --- |
| q3 | Filler | --- | --- |
| q4 | Am relaxed most of the time | ??? | --- |
| q5 | Pay attention to details | --- | ??? |
| q6 | Worry about things | ??? | --- |
| q7 | Make a mess of things | --- | ??? |
| q8 | Seldom feel blue | ??? | --- |
| q9 | Get chores done right away | --- | ??? |
| q10 | Am easily disturbed | ??? | --- |
| q11 | Often forget to put things ... | --- | ??? |
| q12 | Get upset easily | ??? | --- |
| q13 | Like order | --- | ??? |
| q14 | Change my mood a lot | ??? | --- |
| q15 | Shirk my duties | --- | ??? |
| q16 | Have frequent mood swings | ??? | --- |
| q17 | Follow a schedule | --- | ??? |
| q18 | Get irritated easily | ??? | --- |
| q19 | Am exacting in my work | --- | ??? |
| q20 | Often feel blue | ??? | --- |


| Factor Covariance |  |
| :---: | :---: |
| Neuro |  |
| $=1.00$ | Consc |
| 0.00 | $=1.00$ |

Theory:
There are two unrelated interindividual difference factors that underlie our personality scale responses: C \& N.

## Factorial Structure of Personality Scale



## 3. Specify Structural Expectations

Mplus

TITLE: Spearman1904_corr 1 Factor
DATA: FILE = Spearman1904_corr.dat TYPE = COVARIANCE; NOBSERVATIONS = 101.

VARIABLE: NAMES $=c \mathrm{f}$ e m p t ; USEVAR $=c \mathrm{f} e \mathrm{mpt}$; MISSING = .;

## ANALYSIS: TYPE=GENERAL;

MODEL:

g BY c* f e m p t; ! Factor Loadings
c fempt; !Unique Variances
OUTPUT: SAMPSTAT STANDARDIZED;
4. Estimate Parameters
$\Sigma=\Lambda \Psi \Lambda^{\prime}+\theta_{\varepsilon}$

| $\substack{(p \times k)}$ |  |
| :---: | :---: |
|  | Gactor Loading Matrix |
| G | $\Psi=$ Factor Covariance Matrix <br> $(k \times k)$ |
| Classics | .95 |

4. Estimate Parameters

$$
\Sigma=\Lambda \Psi \Lambda^{\prime}+\theta_{\varepsilon}
$$

$$
\theta_{\varepsilon}=\text { Uniquenesses }
$$

( $p \times p$ )

|  | $C$ |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Classics | .08 |  |  |  |  |  |
| French | 0 | .24 |  |  |  |  |
| English | 0 | 0 | .35 |  |  |  |
| Math | 0 | 0 | 0 | .44 |  |  |
| Pitch | 0 | 0 | 0 | 0 | .52 |  |
| Talent | 0 | 0 | 0 | 0 | 0 | .57 |

## 5. Evaluate Parameters \& Fit of Model

Parameters of "One Factor Model"


$$
\chi^{2}=9, \mathrm{df}=9, \text { RMSEA }=.01
$$

5. Evaluate Parameters \& Fit of Model

$$
\hat{\Sigma}=\hat{\Lambda} \Psi \hat{\Lambda}^{\prime}+\theta_{\varepsilon}
$$

$\hat{\Sigma}=$ Estimated Covariance (Correlation) Matrix ( $\mathrm{p} \times \mathrm{p}$ )

|  | C | F | E | M | P | T |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Classics | $.92+.08$ |  |  |  |  |  |
| French | .82 | $.76+.24$ |  |  |  |  |
| English | .76 | .70 | $.65+.35$ |  |  |  |
| Math | .70 | .64 | .59 | $.56+.44$ |  |  |
| Pitch | .65 | .59 | .55 | .51 | $.48+.52$ |  |
| Talent | .62 | .56 | .52 | .48 | .45 | $.43+.57$ |

5. Evaluate Parameters \& Fit of Model

Model Misfit

$$
\Sigma-\hat{\Sigma}=(\text { Observed - Estimated })
$$

|  | C | F | E | M | P | T |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- |
| Classics | .00 |  |  |  |  |  |
| French | -.00 | .00 |  |  |  |  |
| English | .00 | -.03 | .00 |  |  |  |
| Math | -.01 | .02 | .04 | .00 |  |  |
| Pitch | .00 | .05 | -.02 | -.06 | .00 |  |
| Talent | .00 | .00 | -.02 | .02 | -.05 | .00 |

## Evaluating Model Fit

Basic Concepts<br>Fit Statistics<br>Relative Fit

## Evaluating Model Fit

- How well does the model represent the data?
- How well does the model represent the theory?
- Fit to the data
- Measures of how well the estimated covariance matrix derived from the model matches the observed covariance matrix (e.g., $\chi^{2}$, RMSEA)
- Fit to the theory
- Subjective interpretation


## Relative Fit

- Testing model (theory) against viable alternatives
- e.g., fit of 1-factor model relative to 2-factor model


VS.


## Model Fit Statistics

- $\chi^{2}$ (or -2LL)
- df = degrees of freedom
- Null hypothesis - Estimated covariance matrix = Observed covariance matrix
- (sensitive to sample size)
- RMSEA
- Range: 0.00 to 1.00
- lower values indicate better fit
- Rule of thumb: RMSEA < . 05 indicates good fit
- CFI (Comparative Fit Index)
- NFI (Normed Fit Index)
- TLI (Tucker-Lewis Index)
- Range: 0.00 to $1.00+$
- higher values indicate better fit


## Relative Fit of Nested Models

- $\chi^{2}$ difference tests (for nested models)
$-\left[\left(\operatorname{Model}_{\mathrm{B}} \chi^{2}\right)-\left(\operatorname{Model}_{\mathrm{A}} \chi^{2}\right)\right] / \mathrm{df}_{\mathrm{B}}-\mathrm{df}_{\mathrm{A}}$
- Information criteria for non-nested model comparisons (using same data)
- AIC (Aikake Information Criteria)
- BIC (Bayes Information Criteria)
- Lower values are better
- **Should be used in conjunction with judgments about the theoretical interpretation of the models


## Evaluating Relative Fit

- Evaluate Fit for Model A
- Add restrictions to construct Model B
- Evaluate Fit for Model B
- Evaluate difference in fit $=\Delta \chi^{2} / \Delta \mathrm{df}$
- Is the restricted (parsimonious) model of significantly worse fit than the less restrictive (more complex) model - or is this complexity needed?

Relative Fit of Nested Models


Model Comparison: $\Delta \chi^{2} / \Delta \mathrm{df}=44 / 1 \mathrm{p}>.05$

Relative Fit of Different Hypotheses Regarding Structure of the Data

|  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Observed Covariance | (Correlation) Matrix |  |  |  |
|  | Active | Lively | Peppy | Slugg | Tired | Weary |
| Active | 1.00 |  |  |  |  |  |
| Lively | .64 | 1.00 |  |  |  |  |
| Peppy | .56 | .41 | 1.00 |  |  |  |
| Sluggish | -.48 | -.35 | -.42 | 1.00 |  |  |
| Tired | -.47 | -.42 | -.47 | .72 | 1.00 |  |
| Weary | -.43 | -.43 | -.44 | .64 | .83 | 1.00 |

## Practical Issues

Assumptions
Notes on EFA \& CFA
Factor Space \& Selection of Variables
Factor Analyzing Other Types of Data
CFA as base of SEM

## Factor Analysis Assumptions

- Continuous measures
- Multivariate normal distribution
- \# of observations reasonably large
- Observations are independent

Factor as Centroid: Implications for Multivariate Sampling


- Not always looking for factors defined by variables that are highly correlated
- Rather, looking for good coverage of factor space


## Some Practical Notes

- EFA
- ~Large samples
- Results influenced by the set of variables used
- Number of factors influenced by the number of variables per factor
- Requires interpretation of structure
- CFA
- ~Large samples (independent from the EFA sample)
- Results influenced by the set of variables used
- Multiple pieces (or assumptions) needed to identify factors
- Requires hypothesis(es) regarding structure


## Factor Analyzing Other Types of Data

- R-technique (persons x variables)
- Relations between variables that are defined across persons
- P-technique (occasions x variables)
- Relations between variables that are defined across occasions for a single person
- Q-technique (variables x persons)
- Relations among persons defined across variables (How many types of people are there?)


## Factor Analysis $\rightarrow$ SEM



## Use \& Application of Factor Analysis

Note that the method itself does not answer the theoretical question - rather, it provides evidence for careful interpretation

Richard Long, Walking a Circle in Mist, Scotland 1986

## Selected Readings

- Gorsuch, Richard L. (1983). Factor analysis. Hillsdale, NJ: Erlbaum.
- Loehlin, J. (1998). Latent variable models: An introduction to factor, path, \& structural analysis. Mahwah, NJ: Erlbaum.
- Thompson, B. (2004). Exploratory and confirmatory factor analysis: Understanding concepts and applications. Washington DC: APA.
- Tucker, L. R, \& MacCallum, R. Exploratory factor analysis. http://www.unc.edu/~rcm/book/factornew.htm


