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Factor Analysis: An Introduction
• What is Factor Analysis?

• Uses and Applications

• Exploratory Factor Analysis (EFA)
– 5 Steps
– Example

• Confirmatory Factor Analysis (CFA)
– 5 Steps
– Example

• Evaluating Model Fit
• Practical Issues

What is Factor Analysis?

• Method for investigating the structure
underlying variables (or people, or time)

– a set of computational techniques widely 
used in research on individual differences

– a mathematical model used to express 
observations in terms of latent variables
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100+ years of Factor Analysis

• Beginnings: Spearman (1904)
– “One factor theory of intelligence”

• Early Years and Transformations: C. Burt, L.L. 
Thurstone, H. Kaiser, R. B. Cattell, etc.

• Methods for factor extraction
• The number of factors
• The meaning of factors
• Factor rotation methods

• A Revolution: Joreskog (1970s)
– Confirmatory Factor Analysis and SEM



• The fundamental model of Factor Analysis can 
be seen as a direct descendant of other models 
in common usage:

In ANOVA the stimulus is fixed

In Regression the stimulus is random

In Factor Analysis the stimulus is latent

Response = {stimulus} + error
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Observed/Manifest Variables
• A set of empirical observations – data

– usually collected with a purpose (theory)

Arp, 1916

Factors – Abstract/Latent Variables

• a set of theoretical 
concepts used to describe 
hypothetical constructs

• represent testable (i.e., 
rejectable) hypotheses 
about empirical data

Kandinsky, 1926

• “Factors are not things – only evidence 
for the existence of things” (Cattell, 1966)

A Hypothetical Factor Space
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A Multi-Factor Space
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The Common Factor Model

• If two or more characteristics correlate they may 
reflect a shared underlying trait. Patterns of 
correlations reveal the latent dimensions that lie 
beneath the measured qualities (Tabachnik & Fidel, 2005)

• Aim of factor analysis is to represent the 
covariation among observed variables in terms 
of linear relations among a smaller number of 
abstract or latent variables (Cattell, 1988).

A Set of Multivariate Measurements 
(Lebo & Nesselroade, 1978)

obs# active lively peppy sluggish tired weary

1 1 1 1 0 1 0

2 1 1 0 0 1 0

3 1 1 0 0 2 1

4 2 1 1 0 0 0

5 1 1 1 0 0 0

6 2 1 1 0 0 0

7 1 1 0 0 1 1

8 1 1 0 0 1 1

9 1 1 1 0 0 0

10 2 1 0 0 0 0
etc.

N = 103
# of vars = 6 

A Set of Multivariate Measurements 
Summarized as a Correlation Matrix

Active Lively Peppy Slugg Tired Weary

Active 1.00

Lively .64 1.00

Peppy .56 .41 1.00

Sluggish -.48 -.35 -.42 1.00

Tired -.47 -.42 -.47 .72 1.00

Weary -.43 -.43 -.44 .64 .83 1.00



A Multivariate Space
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Data Reduction –
Parsimonious Representation of the Data 
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-.63

Active Lively Peppy Slugg Tired Weary

Active 1.00

Lively .64 1.00

Peppy .56 .41 1.00

Sluggish -.48 -.35 -.42 1.00

Tired -.47 -.42 -.47 .72 1.00

Weary -.43 -.43 -.44 .64 .83 1.00

ENERGY FATIGUE

ENERGY 1.00

FATIGUE -.63 1.00

The Common Factor Model 

• The relations among these six items can be 
parsimoniously represented by the relation 
between two common factors (+ unique parts)
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Squares = Observed Variables

SEM Path Diagrams
A Key
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U Circles = Latent Variables

Double-Headed Arrows = Variances/Covariances

Single-Headed Arrows = Regressions

The Common Factor Model
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Use & Application of Factor Analysis
• Inform evaluations of construct or test validity 

– Does this set of items/variables tap into a single or multiple constructs?
– How many constructs do we need to explain the pattern of responses in 

this study sample?

• Identify groups of interrelated items/variables 
– Which items are related to one another? 
– If individuals score relatively high on one item, on what other items are 

they also likely to score relatively high?

• Developing or testing a theory regarding hypothetical constructs
– What underlying constructs did we measure and how do they relate to one 

another?
– Did we measure the constructs we intended to measure? Do the 

constructs relate to one another in the hypothesized manner?

• Summarize relationships as a more parsimonious set of factors
– that may then be used in additional analyses 

EFA Steps & Example

EFA Steps
EFA Example



Exploratory Factor Analysis (EFA)

• Used to examine the dimensionality of a 
measurement instrument or set of variables 

• Data-driven 
– Post-hoc examination of what structures may 

underlie the data
• What factors (common and unique) were measured
• Number of underlying factors (dimensions)
• Inter-relations among factors

– Finding the smallest number of interpretable 
factors needed to explain the correlations among 
a set of variables – within constraints of the model

5 Steps of EFA
1. Select data for factor analysis 

2. Extract a set of factors sequentially using a set of 
optimization criteria

• Principal axis

3. Select a smaller number of common factors for ease 
in interpretation

• Scree test, Eigenvalues > 1

4. Rotate selected factors towards an interpretable 
solution

• Orthogonal (Varimax), Oblique (promax), Target (Procrustes)

5. *Estimate factor scores using another set of criteria
• Sum scores

Step 1: Select Data
C Q1 Am always prepared
N Q2 Get stressed out easily
- Q3 Have a rich vocabulary
N Q4 Am relaxed most of the time
C Q5 Pay attention to details
N Q6 Worry about things
C Q7 Make a mess of things
N Q8 Seldom feel blue
C Q9 Get chores done right away
N Q10 Am easily disturbed
C Q11 Often forget to put things back in their proper place
N Q12 Get upset easily
C Q13 Like order
N Q14 Change my mood a lot
C Q15 Shirk my duties
N Q16 Have frequent mood swings
C Q17 Follow a schedule
N Q18 Get irritated easily
C Q19 Am exacting in my work
N Q20 Often feel blue

A 20 item trait personality scale

N = 121

Selection of data is not “blind”

Scale intended to measure 
something

Q3 is filler item

Step 1: Select Data
id q1 q2 q3 q4 q5 …

150 5 1 4 3 1
151 4 4 4 3 4
153 3 2 3 4 4
155 4 3 3 3 3
156 2 1 2 1 4
157 3 2 2 3 3
158 2 3 3 2 3
159 5 1 5 1 5
160 3 4 5 1 3
161 5 5 4 1 5
162 4 3 3 2 4
163 4 4 2 2 4



Step 2: Extract Factors 
Principal Axis

• SAS
PROC FACTOR DATA=synpers

METHOD=PRINIT MAXITER=100 CORR
ROTATE=PROMAX 
SCREE NFACT=2 /*MINEIGEN=1*/ REORDER ;
TITLE 'Exploratory 2-Factor Analysis of IPIP Items';
VAR q1-q2 q4-q20; 

RUN;

• R

m1 <- fa(r = synpers, nfactors=2,

rotate="promax",

fm="pa")

Principal axes factor analysis has a long 

history in exploratory analysis and is a 

straightforward procedure. Successive eigen 

value decompositions are done on a 

correlation matrix with the diagonal replaced 

with diag (FF’) until ∑(diag(FF'))does not 

change (very much).

• SPSS

– Analyze à Data Reduction à Factor

• Select variables

• **Extraction – Method: Principal Axis Factoring

• Rotation: Promax

Step 3: Select Number of Factors 
Scree Test, Eigenvalues > 1

Total Variance Explained

4.678 24.621 24.621 3.359
3.287 17.299 41.919 2.408
1.335 7.027 48.946 3.143
1.190 6.261 55.207 1.952
1.043 5.490 60.697 2.965

.987 5.194 65.891

.921 4.850 70.741

.780 4.107 74.848

.712 3.746 78.594

.627 3.298 81.892

.579 3.047 84.939

.518 2.727 87.666

.458 2.408 90.073

.414 2.177 92.250

.378 1.991 94.241

.311 1.638 95.879

.293 1.544 97.423

.255 1.340 98.764

.235 1.236 100.000

Factor
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

Total % of Variance Cumulative % Total
Initial Eigenvalues Rotation

Sums of
Squared
Loadingsa

Extraction Method: Principal Axis Factoring.
When factors are correlated, sums of squared loadings
cannot be added to obtain a total variance.

a. 

Step 4: Rotate Factor Solution for Interpretation 
Factor Loadings

1 2
q1 Am always prepared -0.111 0.586
q2 Get stressed out easily 0.572 0.038

q4 Am relaxed most of the time 0.544 0.088

q5 Pay attention to details 0.014 0.325
q6 Worry about things 0.562 0.051

q7 Make a mess of things -0.321 0.388
q8 Seldom feel blue 0.624 -0.075

q9 Get chores done right away -0.157 0.666
q10 Am easily disturbed 0.528 -0.044

q11 Often forget to put things … -0.021 0.507
q12 Get upset easily 0.752 -0.004

q13 Like order -0.014 0.556
q14 Change my mood a lot 0.578 -0.229

q15 Shirk my duties -0.136 0.526
q16 Have frequent mood swings 0.600 -0.288

q17 Follow a schedule -0.049 0.707
q18 Get irritated easily 0.735 -0.153

q19 Am exacting in my work 0.013 0.494
q20 Often feel blue 0.646 -0.263

Factor Correlation

1.00

-0.153 1.00

Conclusions:

Relations in data can be 
represented by 2 interpretable 
factors 

Names of factors???

à Evidence that scale is 
working in the intended 
manner

Step 5: *Calculate/Estimate Scores 
Composite Scores

Consc = q1 + q5 + q7 + q9 + q11 + 
q13 + q15 + q17 + q19

Neuro = q2 + q4 + q6 + q10 + q12 + 
q14 + q16 + q18 + q20

id Consc Neuro
150 28 22
151 31 24
153 34 22
155 33 20
156 24 12
157 33 19
158 26 19
159 43 12
160 31 16
161 36 13
162 37 23
163 34 24



CFA Steps & Example

CFA Steps
CFA Example: Spearman 1904

Confirmatory Factor Analysis (CFA)

• Used to study how well a hypothesized 
structure fits to a sample of measurements

• Procrustes rotation

• Hypothesis-driven
– Explicitly test a priori hypotheses (theory) about 

the structures that underlie the data 
• Number of , characteristics of, and interrelations among 

underlying factors

– Specify a common measurement base for 
comparisons across groups/occasions (factorial 
invariance)

Confirmatory Factor Analysis (CFA)

• Testing an a-priori hypothesis about the 
structures in the data 

– Requires specific expectations regarding
• The number of factors
• Which variables reflect given factors
• How the factors are related to one another

The Common Factor Model

• Goal: 
– To represent the covariation among observed 

variables in terms of the linear relations 
between a smaller number of latent variables

Σ = LΨL’ + θε
where Σ is the observed p-variate covariance matrix, 

L is a p x q matrix of factor loadings, 
Ψ is a q x q latent factor covariance matrix,
θε is a p x p covariance matrix of unique factors 



5 Steps of CFA
0. Theory-Data: Form some basic ideas of merging 

the common factor model and data

1. Draw a path diagram

2. Input observed covariance matrix Σ (or raw data)

3. Specify “structural expectations” 
– Number of factors
– Relationships among factors
– Relationships among observed variables and factors

4. Estimate parameters
– Maximum likelihood estimation in SEM framework

5. Evaluate parameters and fit of model 

CFA Example: Step 0
The Birth of Factor Analysis, 1904

• “All branches of intellectual activity have in 

common one fundamental function (or group 

of functions) whereas the remaining or 

specific elements of the activity seem in every 

case to be wholly different from that in all 

others” (Spearman, 1904, p. 284)

• One-factor theory of intelligence 

– General intellectual ability (common factor)

– Ability specific to each task or skill (unique factors)

n n nY f ul= +

1. A “One Factor Theory”

G

F2C1 E3
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N=101 
C F E M P T

Classics 1.00
French .83 1.00
English .78 .67 1.00
Math .70 .67 .64 1.00
Pitch .66 .65 .54 .45 1.00
Talent 
(Music)

.63 .57 .51 .51 .40 1.00

2. Input Covariance Matrix
Σ = LΨL’ + θε

Σ = Observed Covariance (Correlation) Matrix 
(p x p)



3. Specify Structural Expectations
Σ = LΨL’ + θε

• # of Factors
– 1 common + 6 unique

• Relations among Factors
– Common factor is related to itself

• Factor Covariance Matrix = Y
– Common factor is unrelated to unique factors

• By definition of the common factor model
– Unique factors are unrelated to one another

• Uniquenesses = q

• Relations among observed variables and factors
– Common factor is indicated by all six observed variables

• Factor loading matrix = L

Factor1 
(f1)

Classics λ1
French λ2
English λ3
Math λ4
Pitch λ5
Talent λ6

3. Specify Structural Expectations
Σ = LΨL’ + θε

Factor 1

Factor 1 =1.00

L = Factor Loading Matrix 
(p x k)

Ψ = Factor Covariance Matrix 
(k x k)

C F E M P T

Classics u21

French 0 u22

English 0 0 u23

Math 0 0 0 u24

Pitch 0 0 0 0 u25

Talent 0 0 0 0 0 u26

3. Specify Structural Expectations
Σ = LΨL’ + θε

θε = Uniquenesses
(p x p)

Testing “Theory” of Measurement Directly 
Factor Loading Matrix Neuro Consc

q1 Am always prepared --- ???
q2 Get stressed out easily ??? ---
q3 Filler --- ---
q4 Am relaxed most of the time ??? ---
q5 Pay attention to details --- ???
q6 Worry about things ??? ---
q7 Make a mess of things --- ???
q8 Seldom feel blue ??? ---
q9 Get chores done right away --- ???
q10 Am easily disturbed ??? ---
q11 Often forget to put things … --- ???
q12 Get upset easily ??? ---
q13 Like order --- ???
q14 Change my mood a lot ??? ---
q15 Shirk my duties --- ???
q16 Have frequent mood swings ??? ---
q17 Follow a schedule --- ???
q18 Get irritated easily ??? ---
q19 Am exacting in my work --- ???
q20 Often feel blue ??? ---

Factor Covariance

Neuro Consc

=1.00

0.00 =1.00

Theory:

There are two unrelated 
interindividual difference factors 
that underlie our personality 
scale responses: C & N.



Factorial Structure of Personality Scale

Q2

Q4

Q6

Q10

Q12

Q14

Q16

Q18

Q20

Neuro
=1

λ2

λ3
λ4
λ5
λ6
λ7
λ8
λ9

Q1

Q5

Q7

Q9

Q11

Q13

Q15

Q17

Q19

Consc

λ11

λ12
λ13
λ14
λ15
λ16
λ17
λ18

=0

=1

λ1 λ10

3. Specify Structural Expectations
Mplus

TITLE: Spearman1904_corr 1 Factor

DATA: FILE = Spearman1904_corr.dat;
TYPE = COVARIANCE;
NOBSERVATIONS = 101;

VARIABLE: NAMES = c f e m p t ;
USEVAR = c f e m p t;
MISSING = .;

ANALYSIS: TYPE=GENERAL;

MODEL:
g BY c* f e m p t; !Factor Loadings
g@1; !Factor Variance
c f e m p t; !Unique Variances

OUTPUT: SAMPSTAT STANDARDIZED;

G

F2C1 E3

U1 U2 U3

λ1 λ2 λ3

P5M4 T6

U4 U5 U6

λ4 λ5 λ6

=1

G

Classics .95

French .87

English .80

Math .74

Pitch .69

Talent .65

4. Estimate Parameters
Σ = LΨL’ + θε

G

G =1.00

L = Factor Loading Matrix 
(p x k)

Ψ = Factor Covariance Matrix 
(k x k)

C F E M P T

Classics .08

French 0 .24

English 0 0 .35

Math 0 0 0 .44

Pitch 0 0 0 0 .52

Talent 0 0 0 0 0 .57

4. Estimate Parameters
Σ = LΨL’ + θε

θε = Uniquenesses
(p x p)



5. Evaluate Parameters & Fit of Model
Parameters of “One Factor Model”

f1

Y2Y1 Y3

U1 U2 U3

.95 .87 .80

Y5Y4 Y6

U4 U5 U6

.74 .69 .65

=1.0

.08 24 .35 .44 .52 .57

χ2 = 9, df = 9, RMSEA = .01

C F E M P T
Classics .92+.08
French .82 .76+.24
English .76 .70 .65+.35
Math .70 .64 .59 .56+.44
Pitch .65 .59 .55 .51 .48+.52
Talent .62 .56 .52 .48 .45 .43+.57

Σ = LΨL’ + θε

Σ = Estimated Covariance (Correlation) Matrix 
(p x p)

^

^ ^ ^ ^
5. Evaluate Parameters & Fit of Model

C F E M P T
Classics .00
French -.00 .00
English .00 -.03 .00
Math -.01 .02 .04 .00
Pitch .00 .05 -.02 -.06 .00
Talent .00 .00 -.02 .02 -.05 .00

5. Evaluate Parameters & Fit of Model
Model Misfit

Σ - Σ = (Observed - Estimated)^

Evaluating Model Fit

Basic Concepts
Fit Statistics
Relative Fit



Evaluating Model Fit

• How well does the model represent the data?
• How well does the model represent the theory?

• Fit to the data
– Measures of how well the estimated covariance 

matrix derived from the model matches the observed 
covariance matrix (e.g., c2, RMSEA)

• Fit to the theory
– Subjective interpretation 

Model Fit Statistics
• χ2 (or -2LL)

– df = degrees of freedom
– Null hypothesis – Estimated covariance matrix = Observed 

covariance matrix
– (sensitive to sample size)

• RMSEA
– Range: 0.00 to 1.00 
– lower values indicate better fit
– Rule of thumb: RMSEA < .05 indicates good fit 

• CFI (Comparative Fit Index)
• NFI (Normed Fit Index)
• TLI (Tucker-Lewis Index)

– Range: 0.00 to 1.00+ 
– higher values indicate better fit

Relative Fit
• Testing model (theory) against viable 

alternatives
• e.g., fit of 1-factor model relative to 2-factor model
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f1

Y2Y1 Y3

U1 U2 U3

λ1 λ2 λ3

Y5Y4 Y6

U4 U5 U6

λ4 λ5 λ6

VS.

Relative Fit of Nested Models

• χ2 difference tests (for nested models)
– [(ModelB χ2 ) - (ModelA χ2 )]/ dfB - dfA

• Information criteria for non-nested model 
comparisons (using same data)
– AIC (Aikake Information Criteria) 
– BIC (Bayes Information Criteria)

• Lower values are better
• **Should be used in conjunction with judgments about 

the theoretical interpretation of the models 



Evaluating Relative Fit
• Evaluate Fit for Model A
• Add restrictions to construct Model B
• Evaluate Fit for Model B

• Evaluate difference in fit = Δχ2/Δdf 
– Is the restricted (parsimonious) model of 

significantly worse fit than the less restrictive 
(more complex) model – or is this complexity 
needed? 

Active Lively Peppy Slugg Tired Weary

Active 1.00

Lively .64 1.00

Peppy .56 .41 1.00

Sluggish -.48 -.35 -.42 1.00

Tired -.47 -.42 -.47 .72 1.00

Weary -.43 -.43 -.44 .64 .83 1.00

Relative Fit of Different Hypotheses Regarding 
Structure of the Data

Σ = Observed Covariance (Correlation) Matrix 
(p x p)

Relative Fit of Nested Models

f1

LA P

U1 U2 U3

-.56 -.50 -.54

TS W

U4 U5 U6

.76 .92 .87

f1

LA P

U1 U2 U3

.86 .72 .65

f2

TS W

U4 U5 U6

.75 .95 .87

.26 .48 .57 .42 .10 .24

-.63
=1.0=1.0=1.0

.68 .74 .70 .41 .14 .23

χ2 = 11, df = 8, RMSEA = .053χ2 = 55, df = 9, RMSEA = .224

Model Comparison: Δχ2 / Δdf = 44/1  p > .05

Practical Issues

Assumptions
Notes on EFA & CFA

Factor Space & Selection of Variables 
Factor Analyzing Other Types of Data

CFA as base of SEM



Factor Analysis Assumptions

• Continuous measures
• Multivariate normal distribution
• # of observations reasonably large
• Observations are independent 

Some Practical Notes
• EFA

– ~Large samples
– Results influenced by the set of variables used
– Number of factors influenced by the number of 

variables per factor
– Requires interpretation of structure

• CFA
– ~Large samples (independent from the EFA sample)
– Results influenced by the set of variables used
– Multiple pieces (or assumptions) needed to identify 

factors
– Requires hypothesis(es) regarding structure

Factor as Centroid: Implications for 
Multivariate Sampling

– Not always looking for factors defined by variables 
that are highly correlated

– Rather, looking for good coverage of factor space
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Factor Analyzing Other Types of Data
• R-technique (persons x variables)

– Relations between variables that are defined 
across persons 

• P-technique (occasions x variables)
– Relations between variables that are defined 

across occasions for a single person

• Q-technique (variables x persons)
– Relations among persons defined across variables 

(How many types of people are there?)



Factor Analysis à SEM

f1

Y2Y1 Z3

U1 U2 U3

λ1 λ2 λ3

f2

Y5Y4 Y6

U4 U5 U6

λ4 λ5 λ6

r

Use & Application of Factor Analysis
Note that the method itself does not answer the 

theoretical question – rather, it provides 
evidence for careful interpretation

Richard Long, Walking a Circle in Mist, Scotland 1986
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