Schedule

Published

April 30, 2025

Modified

February 20, 2025

January 13-17

Thursday, January 16

Topics

  • Structure of the course
  • Levels of analysis
  • Causality in brain and behavior
  • Does neuroscience need behavior? If so, what does psychology need?

Readings

  • Required:
    • Krakauer, Ghazanfar, Gomez-Marin, MacIver, & Poeppel (2017)
    • Parada & Rossi (2018)
  • Optional:
    • Siddiqi, Kording, Parvizi, & Fox (2022)
    • Churchland & Sejnowski (1988)
    • Favela (2020)
    • Ross & Bassett (2024)

Materials

January 20-24

Wednesday, January 22

Thursday, January 23

Topics

  • Neuroanatomy lab

Readings

Materials

January 27-31

Wednesday, January 29

Thursday, January 30

Topics

  • Cellular neuroscience I
    • Anatomy
    • Physiology
      • Resting potential

Readings

Materials

February 3-7

Thursday, February 06

Topics

  • Cellular neuroscience II
    • Action potential
    • Synaptic transmission
  • Exercise 04 assigned. | PDF |

Readings

Materials

February 10-14

Wednesday, February 12

Thursday, February 13

Topics

  • Neurochemistry
    • Neurotransmitters
    • Hormones
  • Neurocomputing

Readings

Materials

February 17-21

Wednesday, February 19

Thursday, February 20

Topics

  • Methods in neuroscience

Readings

  • Watch: MITCBMM (2019)
  • Review: “Cognitive psychology and cognitive Neuroscience/Behavioural and neuroscience methods” (n.d.)
  • Recommended:
  • Optional:
    • Koch et al. (2022)

Materials

February 24-28

Wednesday, February 26

Thursday, February 27

Topics

  • Evolution of the nervous system

Readings

  • Required:
  • Optional:
    • Castrillon et al. (2023)

Materials

March 3-7

Wednesday, March 05

Thursday, March 06

Topics

  • Development of the nervous system

Readings

  • Required:
    • Cao, Huang, & He (2017)
    • Blumberg & Adolph (2023)
  • Optional:
    • Larsen, Sydnor, Keller, Yeo, & Satterthwaite (2023)
    • Rakic (2009)

Materials

March 10-14 Spring Break

March 17-21

Wednesday, March 19

Thursday, March 20

NO CLASS

March 24-28

Wednesday, March 26

Thursday, March 27

Topics

  • Perception & action

Readings

  • Khalsa et al. (2018)
  • Shenoy, Sahani, & Churchland (2013)

Materials

March 31 - April 4

Thursday, April 03

Topics

  • Cognition & Language

Readings

  • Miller & Cohen (2001)
  • Tuckute, Kanwisher, & Fedorenko (2024)

Materials

April 7-11

Thursday, April 10

Topics

  • Neuroscience of emotion

Readings

  • Malezieux, Klein, & Gogolla (2023)
  • Watabe-Uchida, Eshel, & Uchida (2017)

Materials

April 14-18

Thursday, April 17

Topics

  • Disorder & disease I

Readings

  • Howes, Bukala, & Beck (2023)
  • Volk, Chiu, Sharma, & Huganir (2015)

Materials

April 21-25

Thursday, April 24

Topics

  • Disorder & disease II

Readings

  • Moncrieff et al. (2022)
  • Namkung, Kim, & Sawa (2017)

Materials

April 28 - May 2

Thursday, May 01

Topics

  • Student presentations
    • Madison Miles: A brief overview of psychotropic medications
    • Yifei Gong: When meaning shifts and language switches: Investigating the role of domain-general inhibitory control in bilingual prediction errors
  • Beethoven and the Cerebral Symphony

Materials

May 4-9

Thursday, May 08

References

Blumberg, M. S., & Adolph, K. E. (2023). Protracted development of motor cortex constrains rich interpretations of infant cognition. Trends in Cognitive Sciences, 27(3), 233–245. https://doi.org/10.1016/j.tics.2022.12.014
Cao, M., Huang, H., & He, Y. (2017). Developmental connectomics from infancy through early childhood. Trends in Neuroscience, 40(8), 494–506. https://doi.org/10.1016/j.tins.2017.06.003
Castrillon, G., Epp, S., Bose, A., Fraticelli, L., Hechler, A., Belenya, R., … Riedl, V. (2023). An energy costly architecture of neuromodulators for human brain evolution and cognition. Science Advances, 9(50), eadi7632. https://doi.org/10.1126/sciadv.adi7632
Charvet, C. J., & Finlay, B. L. (2012). Chapter 4 - embracing covariation in brain evolution: Large brains, extended development, and flexible primate social systems. In M. A. Hofman & D. Falk (Eds.), Progress in brain research (Vol. 195, pp. 71–87). Elsevier. https://doi.org/10.1016/B978-0-444-53860-4.00004-0
Churchland, P. S., & Sejnowski, T. J. (1988). Perspectives on cognitive neuroscience. Science, 242(4879), 741–745. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/3055294
Cognitive psychology and cognitive Neuroscience/Behavioural and neuroscience methods. (n.d.). https://en.wikibooks.org/wiki/Cognitive_Psychology_and_Cognitive_Neuroscience/Behavioural_and_Neuroscience_Methods. Retrieved from https://en.wikibooks.org/wiki/Cognitive_Psychology_and_Cognitive_Neuroscience/Behavioural_and_Neuroscience_Methods
Cohen, M. X. (2017). Where does EEG come from and what does it mean? Trends in Neurosciences, 40(4), 208–218. https://doi.org/10.1016/j.tins.2017.02.004
Distéfano-Gagné, F., Bitarafan, S., Lacroix, S., & Gosselin, D. (2023). Roles and regulation of microglia activity in multiple sclerosis: Insights from animal models. Nature Reviews. Neuroscience, 24(7), 397–415. https://doi.org/10.1038/s41583-023-00709-6
Favela, L. H. (2020). Cognitive science as complexity science. Wiley Interdisciplinary Reviews. Cognitive Science, 11(4), e1525. https://doi.org/10.1002/wcs.1525
Hillman, E. M. C. (2014). Coupling mechanism and significance of the BOLD signal: A status report. Annual Review of Neuroscience, 37, 161–181. https://doi.org/10.1146/annurev-neuro-071013-014111
Hofman, M. A. (2014). Evolution of the human brain: When bigger is better. Frontiers in Neuroanatomy, 8. https://doi.org/10.3389/fnana.2014.00015
Howes, O. D., Bukala, B. R., & Beck, K. (2023). Schizophrenia: From neurochemistry to circuits, symptoms and treatments. Nature Reviews. Neurology. https://doi.org/10.1038/s41582-023-00904-0
Khalsa, S. S., Adolphs, R., Cameron, O. G., Critchley, H. D., Davenport, P. W., Feinstein, J. S., … Interoception Summit 2016 participants. (2018). Interoception and mental health: A roadmap. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 3, 501–513. https://doi.org/10.1016/j.bpsc.2017.12.004
Koch, C., Svoboda, K., Bernard, A., Basso, M. A., Churchland, A. K., Fairhall, A. L., … Zador, A. M. (2022). Next-generation brain observatories. Neuron, 110(22), 3661–3666. https://doi.org/10.1016/j.neuron.2022.09.033
Krakauer, J. W., Ghazanfar, A. A., Gomez-Marin, A., MacIver, M. A., & Poeppel, D. (2017). Neuroscience needs behavior: Correcting a reductionist bias. Neuron, 93(3), 480–490. https://doi.org/10.1016/j.neuron.2016.12.041
Larsen, B., Sydnor, V. J., Keller, A. S., Yeo, B. T. T., & Satterthwaite, T. D. (2023). A critical period plasticity framework for the sensorimotor-association axis of cortical neurodevelopment. Trends in Neurosciences, 46(10), 847–862. https://doi.org/10.1016/j.tins.2023.07.007
Malezieux, M., Klein, A. S., & Gogolla, N. (2023). Neural circuits for emotion. Annual Review of Neuroscience, 46, 211–231. https://doi.org/10.1146/annurev-neuro-111020-103314
Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167–202. https://doi.org/10.1146/annurev.neuro.24.1.167
MITCBMM. (2019, September). Neuroscience methods tutorial. Youtube. Retrieved from https://www.youtube.com/watch?v=iHthMSN65bA
Moncrieff, J., Cooper, R. E., Stockmann, T., Amendola, S., Hengartner, M. P., & Horowitz, M. A. (2022). The serotonin theory of depression: A systematic umbrella review of the evidence. Molecular Psychiatry. https://doi.org/10.1038/s41380-022-01661-0
Namkung, H., Kim, S.-H., & Sawa, A. (2017). The insula: An underestimated brain area in clinical neuroscience, psychiatry, and neurology. Trends in Neurosciences, 40(4), 200–207. https://doi.org/10.1016/j.tins.2017.02.002
Oliveira, J. F., Sardinha, V. M., Guerra-Gomes, S., Araque, A., & Sousa, N. (2015). Do stars govern our actions? Astrocyte involvement in rodent behavior. Trends in Neurosciences, 38(9), 535–549. https://doi.org/10.1016/j.tins.2015.07.006
Parada, F. J., & Rossi, A. (2018). If neuroscience needs behavior, what does psychology need? Frontiers in Psychology, 9, 433. https://doi.org/10.3389/fpsyg.2018.00433
Rakic, P. (2009). Evolution of the neocortex: A perspective from developmental biology. Nature Reviews. Neuroscience, 10(10), 724–735. https://doi.org/10.1038/nrn2719
Ross, L. N., & Bassett, D. S. (2024). Causation in neuroscience: Keeping mechanism meaningful. Nature Reviews. Neuroscience. https://doi.org/10.1038/s41583-023-00778-7
Sarkar, A., Lehto, S. M., Harty, S., Dinan, T. G., Cryan, J. F., & Burnet, P. W. J. (2016). Psychobiotics and the manipulation of Bacteria–Gut–Brain signals. Trends in Neurosciences, 39(11), 763–781. https://doi.org/10.1016/j.tins.2016.09.002
Shenoy, K. V., Sahani, M., & Churchland, M. M. (2013). Cortical control of arm movements: A dynamical systems perspective. Annual Review of Neuroscience, 36, 337–359. https://doi.org/10.1146/annurev-neuro-062111-150509
Siddiqi, S. H., Kording, K. P., Parvizi, J., & Fox, M. D. (2022). Causal mapping of human brain function. Nature Reviews Neuroscience, 23(6), 361–375. https://doi.org/10.1038/s41583-022-00583-8
Tuckute, G., Kanwisher, N., & Fedorenko, E. (2024). Language in brains, minds, and machines. Annual Review of Neuroscience, 47, 277–301. https://doi.org/10.1146/annurev-neuro-120623-101142
Volk, L., Chiu, S.-L., Sharma, K., & Huganir, R. L. (2015). Glutamate synapses in human cognitive disorders. Annual Review of Neuroscience, 38, 127–149. https://doi.org/10.1146/annurev-neuro-071714-033821
Watabe-Uchida, M., Eshel, N., & Uchida, N. (2017). Neural circuitry of reward prediction error. Annual Review of Neuroscience, 40, 373–394. https://doi.org/10.1146/annurev-neuro-072116-031109
Zeng, H., & Sanes, J. R. (2017). Neuronal cell-type classification: Challenges, opportunities and the path forward. Nature Reviews. Neuroscience. https://doi.org/10.1038/nrn.2017.85